{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "b773bf8e-c420-44e1-80a6-99f75dd12268",
"metadata": {},
"source": [
"## Pipelines and Transformers\n",
"\n",
"This notebook showcases the current version of data processing pipelines in CapyMOA. \n",
"\n",
"* Includes examples of how preprocessing can be accomplished via pipelines and transformers.\n",
"* Transformers transform an instance, e.g., using standardization, normalization, etc.\n",
"* Pipelines bundle transformers, drift detectors, and learners (classifiers, regressors, clustering algorithms etc.)\n",
"* Some pipelines act as classifiers or regressors\n",
"\n",
"Please note that this feature is still under development; some functionality might not yet be available or change in future releases.\n",
"\n",
"\n",
"*More information about CapyMOA can be found in* https://www.capymoa.org\n",
"\n",
"**notebook last updated on 10/06/2024**\n",
"\n",
"### Main features\n",
"\n",
"We've redesigned the pipeline API to be more flexible and modular compared to the initial version.\n",
"\n",
"- The new API is now generic, meaning it can handle all types of data stream algorithms (e.g., classifiers, regressors, data transformations, change detectors, clustering, etc.). The only requirement is that there exists a `PipelineElement` class compatible with the algorithm. This class represents a single step within the pipeline and provides a unified interface for the overall pipeline object (which is of type `BasePipeline`).\n",
"- A pipeline can also function as a `PipelineElement`. This allows for the creation of smaller pipelines that can be combined into a larger pipeline. For instance, you could create separate data cleaning, transformation, and prediction pipelines and then integrate them into one comprehensive pipeline.\n",
"- Besides the vanilla `BasePipeline`, we currently support `ClassifierPipeline` and `RegressorPipeline`. These classes act as CapyMOA `Classifiers` and `Regressors`, meaning they support `predict` and `train`.\n",
"- Adding drift detectors to a pipeline and specifying their behavior and position within the pipeline is flexible and intuitive.\n",
"\n",
"This notebook explores these various options with examples.\n",
"\n",
"### PipelineElements and their structure\n",
"\n",
"We currently support four types of pipeline elements: `ClassifierPipelineElement`, `RegressorPipelineElement`, `TransformerPipelineElement`, and `DriftDetectorPipelineElement`. They all implement the `PipelineElement` protocol, which provides two functions:\n",
"\n",
"1. `pass_forward(instance) -> Instance`\n",
" - Passes the instance through the pipeline.\n",
" - The specific action taken depends on the type of pipeline element.\n",
" - For example, a `TransformerPipelineElement` applies a transformation to the instance.\n",
"2. `pass_forward_predict(instance, prediction) -> Tuple[Instance, Any]`\n",
" - Similar to `pass_forward` but can also pass along a prediction.\n",
" - For example, a classifier could predict the instance's label and then pass the tuple `(instance, prediction)` to the next element in the pipeline.\n",
"\n",
"This protocol offers great flexibility. For instance, one could develop a `ClusteringPipelineElement` that performs clustering and then passes the instance and clustering result to the next element in the pipeline.\n",
"\n",
"Let's now look at the currently supported pipeline elements:\n",
"\n",
"#### TransformerPipelineElement\n",
"This element is initialized with a CapyMOA `Transformer`.\n",
"- `pass_forward` transforms and returns the provided instance.\n",
"- `pass_forward_predict` transforms the provided instance and returns the transformed instance and the input prediction.\n",
"\n",
"#### ClassifierPipelineElement and RegressorPipelineElement\n",
"These elements are initialized with a CapyMOA `Classifier` or `Regressor`.\n",
"- `pass_forward` trains the learner on the provided instance.\n",
"- `pass_forward_predict` predicts the label/value of the instance and returns `(instance, prediction)`.\n",
"\n",
"#### DriftDetectorPipelineElement\n",
"This element is initialized with a CapyMOA `BaseDriftDetector` and a callable `prepare_drift_detector_input_func` that takes an instance as input and returns the input for the change detector.\n",
"- `pass_forward` does nothing.\n",
"- `pass_forward_predict` updates the change detector. Internally, the drift detector calls `prepare_drift_detector_input_func` and passes the output to the change detector.\n",
"\n",
"The `prepare_drift_detector_input_func` offers flexibility: it can be used to select a subset of features for the drift detector to monitor (e.g., for unsupervised drift detection), to compute the prediction error (e.g., for regression), or to check if the prediction matches the label (for classification).\n",
"\n",
"#### BasePipeline (and inheritors)\n",
"Pipelines themselves are pipeline elements, allowing you to combine them into larger pipelines.\n",
"- `pass_forward` calls `pass_forward` on all its elements.\n",
"- `pass_forward_predict` calls `pass_forward_predict` on all its elements."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "55d070de-8697-4f98-a11b-eab4e3d5c281",
"metadata": {},
"source": [
"## 1. Running onlineBagging without any preprocessing\n",
"\n",
"First, let us have a look at a simple test-then-train classification example without pipelines. \n",
"- We loop over the instances of the data stream\n",
"- make a prediction,\n",
"- update the evaluator with the prediction and label\n",
"- and then train the classifier on the instance."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "49ff5008",
"metadata": {
"nbsphinx": "hidden"
},
"outputs": [],
"source": [
"# This cell is hidden on capymoa.org. See docs/contributing/docs.rst\n",
"from util.nbmock import mock_datasets, is_nb_fast\n",
"\n",
"if is_nb_fast():\n",
" mock_datasets()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "14681f54-23a1-4f93-9145-abf484c91c54",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"82.06656073446328"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Test-then-train loop\n",
"from capymoa.datasets import Electricity\n",
"from capymoa.classifier import OnlineBagging\n",
"from capymoa.evaluation import ClassificationEvaluator\n",
"\n",
"## Opening a file as a stream\n",
"elec_stream = Electricity()\n",
"\n",
"# Creating a learner\n",
"ob_learner = OnlineBagging(schema=elec_stream.get_schema(), ensemble_size=5)\n",
"\n",
"# Creating the evaluator\n",
"ob_evaluator = ClassificationEvaluator(schema=elec_stream.get_schema())\n",
"\n",
"while elec_stream.has_more_instances():\n",
" instance = elec_stream.next_instance()\n",
"\n",
" prediction = ob_learner.predict(instance)\n",
" ob_evaluator.update(instance.y_index, prediction)\n",
" ob_learner.train(instance)\n",
"\n",
"ob_evaluator.accuracy()"
]
},
{
"cell_type": "markdown",
"id": "94362841-b267-471b-9a8c-b4094ad81acb",
"metadata": {},
"source": [
"## 2. Transforming instances using pipelines\n",
"\n",
"If we want to perform some preprocessing, such as normalization or feature transformation, or a combination of both, we can chain multiple `Transformer`s within a pipeline. The most basic pipeline class `BasePipeline` already supports this.\n",
"\n",
"Creating a basic pipeline consists of the following steps:\n",
"1. Create a stream instance\n",
"2. Initialize the transformers\n",
"4. Create the `BasePipeline`\n",
"5. Add the transformers to the pipeline\n",
"6. Call `pass_forward` to apply the transformations:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6724b905-53a0-49e9-b8a6-af1b30aececc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"77.5048552259887"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from capymoa.stream.preprocessing import MOATransformer\n",
"from capymoa.stream.preprocessing import BasePipeline\n",
"from capymoa.stream import Stream\n",
"from moa.streams.filters import AddNoiseFilter, NormalisationFilter\n",
"from moa.streams import FilteredStream\n",
"\n",
"elec_stream = Electricity()\n",
"\n",
"# Creating the transformers\n",
"normalisation_transformer = MOATransformer(schema=elec_stream.get_schema(), moa_filter=NormalisationFilter())\n",
"add_noise_transformer = MOATransformer(schema=normalisation_transformer.get_schema(), moa_filter=AddNoiseFilter())\n",
"\n",
"# Creating and populating the pipeline\n",
"pipeline = BasePipeline()\n",
"\n",
"# Add the transformers to the pipeline. We can change the calls to add_transformer, as they return self\n",
"pipeline = (pipeline\n",
" .add_transformer(normalisation_transformer)\n",
" .add_transformer(add_noise_transformer))\n",
"\n",
"# Creating a learner\n",
"ob_learner = OnlineBagging(schema=add_noise_transformer.get_schema(), ensemble_size=5)\n",
"\n",
"# Creating the evaluator\n",
"ob_evaluator = ClassificationEvaluator(schema=elec_stream.get_schema()) \n",
"\n",
"while elec_stream.has_more_instances():\n",
" instance = elec_stream.next_instance()\n",
" transformed_instance = pipeline.pass_forward(instance)\n",
" prediction = ob_learner.predict(transformed_instance)\n",
" ob_evaluator.update(instance.y_index, prediction)\n",
" ob_learner.train(transformed_instance)\n",
"\n",
"ob_evaluator.accuracy()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0c1360ef-0583-4c87-8645-1e2d701fffca",
"metadata": {},
"source": [
"## 2. Online Bagging using pipelines and transformers\n",
"\n",
"Similar as classifiers, a `ClassifierPipeline` supports `train` and `test`. Hence, we can use it in the same way as we would use other capymoa classifiers. \n",
"\n",
"- When calling `train`, the pipeline object internally calls `pass_forward` on all elements.\n",
"- When calling test, the pipeline object internally calls `pass_forward_predict` on all elements and then returns the resulting prediction.\n",
"\n",
"Creating a pipeline consists of the following steps:\n",
"\n",
"1. Create a stream instance\n",
"2. Initialize the transformers\n",
"3. Initialize the learner\n",
"4. Create the pipeline. Here, we use a `ClassifierPipeline`\n",
"5. Add the transformers and the classifier\n",
"6. Use the pipeline the same way as any other learner."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ae9bb646-e0d1-4de6-b5a1-cff0f0a1b172",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"77.5048552259887"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from capymoa.stream.preprocessing import MOATransformer\n",
"from capymoa.stream.preprocessing import ClassifierPipeline\n",
"from moa.streams.filters import AddNoiseFilter, NormalisationFilter\n",
"\n",
"elec_stream = Electricity()\n",
"\n",
"# Creating the transformers\n",
"normalisation_transformer = MOATransformer(\n",
" schema=elec_stream.get_schema(), moa_filter=NormalisationFilter()\n",
")\n",
"add_noise_transformer = MOATransformer(\n",
" schema=normalisation_transformer.get_schema(), moa_filter=AddNoiseFilter()\n",
")\n",
"\n",
"# Creating a learner\n",
"ob_learner = OnlineBagging(schema=add_noise_transformer.get_schema(), ensemble_size=5)\n",
"\n",
"# Creating and populating the pipeline\n",
"pipeline = (ClassifierPipeline()\n",
" .add_transformer(normalisation_transformer)\n",
" .add_transformer(add_noise_transformer)\n",
" .add_classifier(ob_learner))\n",
"\n",
"# Creating the evaluator\n",
"ob_evaluator = ClassificationEvaluator(schema=elec_stream.get_schema())\n",
"\n",
"while elec_stream.has_more_instances():\n",
" instance = elec_stream.next_instance()\n",
" prediction = pipeline.predict(instance)\n",
" ob_evaluator.update(instance.y_index, prediction)\n",
" pipeline.train(instance)\n",
"\n",
"ob_evaluator.accuracy()"
]
},
{
"cell_type": "markdown",
"id": "676f53b7-0839-47a5-88f9-393b2007855e",
"metadata": {},
"source": [
"We can also get a textual representation of the pipeline:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "31a481db-d23b-4fc8-a689-fc5c14df5fff",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'PE(Transformer(NormalisationFilter)) | PE(Transformer(AddNoiseFilter)) | PE(OnlineBagging) | '"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"str(pipeline)"
]
},
{
"cell_type": "markdown",
"id": "df255274-83cd-41df-a1da-04778bc427aa",
"metadata": {},
"source": [
"### 2.1 Alternative syntax\n",
"* An alternative syntax to define the pipeline is shown below\n",
"* Since the pipeline behaves like a learner, it can be used with high-level evaluation functions like `prequential_evaluation`"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "50cb066b-e3e4-4ffd-ad9d-65631d5462e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AdaptiveRandomForest: 88.55049435028248\n",
"PE(Transformer(NormalisationFilter)) | PE(AdaptiveRandomForest) | : 88.04069562146893\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHWCAYAAAARsiigAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGp0lEQVR4nOzdd3gUZdfH8e+m9wQIJYFAgNB77wiIoCCCdEWKBRVBxIKAiqI+vAqKiviI+KiAiBRBEQUpKr33IlV67xDSy877x5CFJQEhJpmU3+e69srszOzM2dnZzZ697zm3zTAMAxERERERERHJci5WByAiIiIiIiKSVykpFxEREREREbGIknIRERERERERiygpFxEREREREbGIknIRERERERERiygpFxEREREREbGIknIRERERERERiygpFxEREREREbGIknIRERERERERiygpFxEREREREbGIknIRERERERERiygpFxEREREREbGIknIRERFJt+joaKtDEBERydGUlIuIiGQjR44c4bnnnqNcuXJ4e3tToEABunTpwuHDh1Ote/nyZV588UXCw8Px9PSkWLFi9OrVi/PnzzvWiYuLY8SIEZQtWxYvLy9CQkLo2LEjBw4cAGDp0qXYbDaWLl3qtO3Dhw9js9mYNGmSY16fPn3w8/PjwIEDtGnTBn9/f3r06AHAihUr6NKlC8WLF8fT05OwsDBefPFFYmNjU8W9Z88eunbtSsGCBfH29qZcuXK8/vrrACxZsgSbzcZPP/2U6nHff/89NpuNNWvW3O1hFRERybbcrA5ARERErtuwYQOrV6+me/fuFCtWjMOHDzN+/HiaNWvGrl278PHxASAqKoomTZqwe/dunnjiCWrWrMn58+eZO3cux48fJzg4mOTkZB588EH++OMPunfvzgsvvMDVq1dZvHgxO3fupHTp0ncdX1JSEq1bt6Zx48Z8+OGHjnh++OEHYmJi6NevHwUKFGD9+vWMGzeO48eP88MPPzgev337dpo0aYK7uztPP/004eHhHDhwgF9++YWRI0fSrFkzwsLCmDp1Kg8//LDTvqdOnUrp0qVp0KDBvzjCIiIi2YuSchERkWykbdu2dO7c2Wleu3btaNCgAbNnz6Znz54AfPDBB+zcuZMff/zRKXl94403MAwDgG+//ZY//viDjz76iBdffNGxztChQx3r3K34+Hi6dOnCe++95zR/1KhReHt7O+4//fTTRERE8Nprr3H06FGKFy8OwPPPP49hGGzevNkxD+D9998HwGaz8dhjj/HRRx9x5coVAgMDATh37hyLFi1ytKiLiIjkFuq+LiIiko3cmNgmJiZy4cIFIiIiCAoKYvPmzY5ls2fPplq1aqlak8FMbFPWCQ4O5vnnn7/lOunRr1+/28YdHR3N+fPnadiwIYZhsGXLFsBMrJcvX84TTzzhlJDfHE+vXr2Ij49n1qxZjnkzZswgKSmJxx57LN1xi4iIZEdKykVERLKR2NhY3nzzTcLCwvD09CQ4OJiCBQty+fJlrly54ljvwIEDVK5c+bbbOnDgAOXKlcPNLeM6xrm5uVGsWLFU848ePUqfPn3Inz8/fn5+FCxYkHvuuQfAEffBgwcB/jHu8uXLU6dOHaZOneqYN3XqVOrXr09ERERGPRUREZFsQd3XRUREspHnn3+eiRMnMmjQIBo0aEBgYCA2m43u3btjt9szfH+3ajFPTk5Oc76npycuLi6p1r3vvvu4ePEiQ4YMoXz58vj6+nLixAn69OmTrrh79erFCy+8wPHjx4mPj2ft2rV89tlnd70dERGR7E5JuYiISDYya9YsevfuzZgxYxzz4uLiuHz5stN6pUuXZufOnbfdVunSpVm3bh2JiYm4u7unuU6+fPkAUm3/yJEjdxzzjh072LdvH5MnT6ZXr16O+YsXL3Zar1SpUgD/GDdA9+7deemll5g2bRqxsbG4u7vTrVu3O45JREQkp1D3dRERkWzE1dU1VRG2cePGpWq57tSpE9u2bUtz6LCUx3fq1Inz58+n2cKcsk6JEiVwdXVl+fLlTss///zzu4r5xm2mTI8dO9ZpvYIFC9K0aVO++eYbjh49mmY8KYKDg3nggQf47rvvmDp1Kvfffz/BwcF3HJOIiEhOoZZyERGRbOTBBx9kypQpBAYGUrFiRdasWcPvv/9OgQIFnNYbPHgws2bNokuXLjzxxBPUqlWLixcvMnfuXL744guqVatGr169+Pbbb3nppZdYv349TZo0ITo6mt9//53nnnuO9u3bExgYSJcuXRg3bhw2m43SpUvz66+/cvbs2TuOuXz58pQuXZpXXnmFEydOEBAQwOzZs7l06VKqdT/99FMaN25MzZo1efrppylZsiSHDx9m3rx5bN261WndXr16OSrRv/vuu3d/MEVERHIAJeUiIiLZyNixY3F1dWXq1KnExcXRqFEjfv/9d1q3bu20np+fHytWrOCtt97ip59+YvLkyRQqVIh7773XUYjN1dWV+fPnM3LkSL7//ntmz55NgQIFaNy4MVWqVHFsa9y4cSQmJvLFF1/g6elJ165d+eCDD/6xIFsKd3d3fvnlFwYOHMh7772Hl5cXDz/8MAMGDKBatWpO61arVo21a9cyfPhwxo8fT1xcHCVKlKBr166pttuuXTvy5cuH3W7noYceuttDKSIikiPYjPQOVCoiIiKSiZKSkggNDaVdu3Z8/fXXVocjIiKSKXRNuYiIiGRLc+bM4dy5c07F40RERHIbtZSLiIhItrJu3Tq2b9/Ou+++S3BwMJs3b7Y6JBERkUyjlnIRERHJVsaPH0+/fv0oVKgQ3377rdXhiIiIZCq1lIuIiIiIiIhYRC3lIiIiIiIiIhZRUi4iIiIiIiJikVw/TrndbufkyZP4+/tjs9msDkdERERERERyOcMwuHr1KqGhobi43L4tPNcn5SdPniQsLMzqMERERERERCSPOXbsGMWKFbvtOrk+Kff39wfMgxEQEGBxNJJTJSYmsmjRIlq1aoW7u7vV4YhkKp3vklfoXJe8ROe75CXZ4XyPjIwkLCzMkY/eTq5PylO6rAcEBCgpl3RLTEzEx8eHgIAA/SOTXE/nu+QVOtclL9H5LnlJdjrf7+QSahV6ExEREREREbGIknIRERERERERiygpFxEREREREbFIrr+m/E4YhkFSUhLJyclWhyLZVGJiIm5ubsTFxek8kVxP57vkFWmd666urri5uWkYVRERyTJ5PilPSEjg1KlTxMTEWB2KZGOGYVCkSBGOHTumL2qS6+l8l7ziVue6j48PISEheHh4WBidiIjkFXk6Kbfb7Rw6dAhXV1dCQ0Px8PDQF1BJk91uJyoqCj8/P1xcdNWH5G463yWvuPlcNwyDhIQEzp07x6FDhyhTpozeAyIikunydFKekJCA3W4nLCwMHx8fq8ORbMxut5OQkICXl5e+oEmup/Nd8oq0znVvb2/c3d05cuSIY5mIiEhm0rct0JdOERERcdD3AhERyUr6ryMiIiIiIiJiESXlIiIiIiIiIhZRUp6HJSQkEBERwerVq60O5bbmzJlDREQErq6uDBo0yOpw7kpOOcZ3ok+fPnTo0MFxv1mzZpn+ety8z8w2YsQIqlevniX7T0hIIDw8nI0bNzrNHzp0KM8///w/Pn7SpEk0a9YsU2K72YULFyhUqBCHDx/+19uy2WzMmTPnX2/nnxw+fBibzcbWrVszfV9ZJSvecznJrl27KFasGNHR0f+4rs1my5DzV0REJDNYmpRfvXqVQYMGUaJECby9vWnYsCEbNmxwLP/xxx9p1aoVBQoUyNZfrg6dj2bUgj08P20Loxbs4dD5f/6C8G/06dMHm82GzWbDw8ODiIgI3nnnHZKSkgBYunSpY/nNt9OnTzu288UXX1CyZEkaNmzIpEmTbvmYlJtVX2ieeeYZOnfuzLFjx3j33XctiSG9bjzGKWw2G15eXhw5csRp3Q4dOtCnT58sjjD9fvzxxwx7PW6VQI0dO5ZJkyZlyD5S3Opc/+qrr3jllVf4448/bvnYjEyKPDw8eOWVVxgyZIjT/FdeeYXJkydz8ODBf72PZs2aOZ6fl5cXFStW5PPPP3csv9WxuLnw5ciRI2nfvj3h4eGp9tG6dWtcXV2dPruzWlo/noSFhXHq1CkqV66cYfu58Xi5uLgQEhJCt27dOHr0aIbtIzu48by58ZbyP8aqmG5+71WsWJH69evz0UcfWROUiIhIBrE0KX/qqadYvHgxU6ZMYceOHbRq1YqWLVty4sQJAKKjo2ncuDGjRo2yMszbmrnxGPeOWcqXyw8yb/tJvlx+kHvHLOWHjccydb/3338/p06dYv/+/bz88suMGDGCDz74wGmdvXv3curUKadboUKFAHNs1s8++4wnn3wSgG7dujmt16BBA/r27es0LywszLHthISETH1+KaKiojh79iytW7cmNDQUf3//dG0nq+IFSE5Oxm63pzrGN7LZbLz55psZul/DMLL0S3P+/PnT/XrcqcDAQIKCgjJ8uwEBAaneGz169MDPz48CBQpk+P5ulnI+9ujRg5UrV/LXX385lgUHB9O6dWvGjx+fIftKeR/v2rWLrl270r9/f6ZNm+ZYntaxOHTokGN5TEwMX3/9dZrn8dGjR1m9ejUDBgzgm2++yZB4M4qrqytFihTBzS1jBxlJOV4nTpxg9uzZ7N27ly5dumToPrKDmz//T506le5jmZmfv48//jjjx4+39AcDERGRf8uypDw2NpbZs2czevRomjZtSkREBCNGjCAiIsLxZbRnz568+eabtGzZMsviMgyDmISkO7rtOnWFobO3Yzcg2W44/R0yezu7T125420ZhnFXcXp6elKkSBFKlChBv379aNmyJXPnznVap1ChQhQpUsTpllJRdtOmTRw4cIC2bdsC5hAwN67n4eGBj4+P4/7QoUPp1KkTI0eOJDQ0lHLlygEwZcoUateujb+/P0WKFOHRRx/l7NmzjhhSWu3/+OMPateujY+PDw0bNmTv3r2OdbZt20bz5s3x9/cnICCAWrVqsXHjRpYuXepI+lq0aIHNZmPp0qUAzJ49m0qVKuHp6Ul4eDhjxoxxeu7h4eG8++679OrVi4CAAJ5++mkmTZpEUFAQv/76K+XKlcPHx4fOnTsTExPD5MmTCQ8PJ1++fAwcOJDk5GTHtuLj4xk8eDAVK1bE39+fevXqOeIAHNudO3cuFStWxNPTk6NHj6Y6xjcaMGAA3333HTt37rzlaxwfH8/AgQMpVKgQXl5eNG7c2Kk1MuXY/vbbb9SqVQtPT09WrlxJs2bNeP755xk0aBD58uWjcOHC/O9//yM6OprHH38cf39/IiIi+O233xzbSk5O5sknn6RkyZJ4e3tTrlw5xo4de8vYIHXL1eeff06ZMmXw8vKicOHCdO7c2bFswYIFNG7cmKCgIAoUKMCDDz7IgQMHHMtLliwJQI0aNbDZbI5u2Te3gN7pMbnd+QbmjyI3vze8vb1TdV+/UZ8+fVi2bBljx45N1Xtk586dPPDAA/j5+VG4cGF69uzJ+fPnnY7VgAEDGDRokCPpBsiXLx+NGjVi+vTpTvtq165dqnnplfI+LlWqFCNGjKBMmTJOnxVpHYvChQs7ls+fPx9PT0/q16+fatsTJ07kwQcfpF+/fkybNo3Y2Fin5fv376dp06aOVvrFixen2saQIUMoW7YsPj4+lCpViuHDh5OYmOhYnvKaTJgwwTF8ZdeuXbly5Ypj+eTJk/n5558dr8vSpUudel/Y7XaKFSuW6oeOLVu24OLi4ui1cvnyZZ566ikKFixIQEAALVq0YNu2bU6PSTleISEhNGzYkCeffJL169cTGRl5189pypQphIeHExgYSPfu3bl69apjnejoaHr16oWfnx8hISGpPuMALl26RK9evciXLx8+Pj488MAD7N+/37E8vZ95gNPnf8otRXo+fwFWrlxJkyZN8Pb2JiwsjIEDBzp1Pb/VZ8jt3nv33XcfFy9eZNmyZamOj4iISE5h2TjlSUlJJCcnpxr/09vbm5UrV6Z7u/Hx8cTHxzvup3xRSkxMdPpSlDLPMAzsdjt2ux2AmIQkKo9I/cXxbtkNeGDsnT+PnSPuw8fjzl4OwzAccafw8vLiwoULTs/lxumbLV++nLJly+Lr63vLdW7ch2EY/PHHH/j7+7Nw4ULH9uPj43n77bcpV64cZ8+e5ZVXXqF3797MmzfPsQ7A66+/zgcffEDBggV57rnneOKJJ1ixYgVgthZWr16d//73v7i6urJ161ZcXV2pX78+u3fvpkKFCvzwww80bNiQ/Pnzs2HDBrp27cpbb71F165dHS11+fLlc+r+/eGHHzJ8+HCGDx8OwIoVK4iJiWHs2LF8//33XL16lc6dO9OhQwfHF9eDBw/SpUsXGjRoQLdu3QDo378/u3bt4quvviIiIoKff/6Z+++/n23btlGmTBnsdjsxMTGMGjWKL7/8kgIFChAcHMyPP/54y2PcoEED2rZty5AhQ/jll1/SfF0HDx7M7NmzmThxIiVKlOCDDz6gdevW7Nu3j/z58zvWGzp0KKNHj6ZUqVLky5cPgMmTJzN48GDWrl3LzJkz6devHz/++CMdOnRg6NChfPLJJ/Ts2ZPDhw/j4+NDUlISRYsWZcaMGRQoUIDVq1fz7LPPUrhwYbp27XrL8y7l/saNGxk4cCCTJ0+mYcOGXLx4kZUrVzrWTblUpWrVqkRFRfHWW2/x8MMPs3nzZlxcXFi7di3169dn0aJFVKpUCQ8PD0dvg/Qck9udbze+P9I6529cduP+P/74Y/bt20elSpV4++23AShYsCAXL16kRYsWPPnkk4wZM4bY2FiGDh1K165d+f333x3bnjx5Ms8++2yqOOrUqcOKFSuc4qlduzbHjx/n4MGDaXYZ/6fncfNzunEdb29v4uPjU31WpHUcDMNg+fLl1KxZM811Jk6cyLhx4yhbtiwRERHMnDmTnj17OrbZsWNHChcuzJo1a7hy5QovvfSSY1nK9vz8/Pjmm28IDQ1lx44dPPPMM/j5+TF48GDHfv7++29mzpzJzz//TGRkJH379qVfv3589913vPTSS+zatYvIyEhHa33+/Pk5efKk03Pr3r0733//Pc8884zjOXz33Xc0atSIsLAw7HY7nTt3xtvbm3nz5hEYGMiXX37Jvffey549e5zOr5S/Z8+e5aeffsLV1RWbzXZXz+nAgQP89NNPzJ07l0uXLtG9e3fee+89/vOf/wDmZQzLli3jp59+olChQrz++uts3ryZatWqOfbTu3dv/v77b+bMmUNAQABDhw6lTZs27Ny5E3d3d8dn091+5qV13qTYtGlTuj5/9+/fz/3338+7777LV199xblz5xg4cCD9+/fnm2++ue1nyK3ee3a7HTc3N6pXr87y5ctp3rx5qnhvlNb/xBvP9RuXpXz+JCYm4urqetvtiuQUKd+Db/4+LJIbZYfz/W72bVlS7u/vT4MGDXj33XepUKEChQsXZtq0aaxZs4aIiIh0b/e9995z/NO+0aJFi1JdJ+nm5kaRIkWIiopydK+LTUhO9discDXyKkked/aPPzExkaSkJCIjIzEMg2XLlrFo0SL69u1LZGQkMTExABQvXtzpcWFhYaxZswYwvyAVKlTIqXXnRklJSSQkJDj9qOHj48OYMWPw8PAAzB88bmwNDQ4OZuTIkbRo0YKTJ0/i5+fniGXYsGHUqFEDMFuJu3XrxtmzZ/Hy8uLo0aP079+f0NBQAEcrYlxcHN7e3oD5o4OPjw9xcXGMHj2ae+65h4EDBwLQsWNHtm7dygcffEDHjh0B8wtVkyZNeOqppxzxxcXFkZiYyOjRox0ts+3atWPmzJns3bsXPz8/ihUrRpMmTVi0aBEPPPAAx44dY9KkSezYsYOQkBDA7NY5b948JkyYwJtvvunY7vvvv++4fjUpKem2xzg2NpbXXnuNxo0bs2DBAho2bEhSUhKJiYlERkYSHR3NF198wX//+18aNWoEmF9yFy9ezOeff87AgQMdx3bIkCHUq1fP6bWrVKmSo1jYc889x6hRowgMDHR86R40aBBffPEFa9asoU6dOgCOhCnluCxfvpxp06Zx//33O86BlPPu5nNk7969+Pj40LRpU/z9/cmXLx+lS5d2rHvfffc5tl2oUCE++eQTIiIiWL9+PRUrVkz1OqecXzfu826Oye3Ot7i4OK5cuUJAQIAjJl9fX/bu3Ut8fDzJyclO533K/lOuI3Zzc3PEGB0dzUcffUSVKlWcrg3/5JNPqFy5Mps3byYiIoKkpCRKlSrF66+/7lgnZR/58+fn0KFDTueJn58fALt37yZ//vypzh8wz+cbX4+03PgaJScnM2vWLLZv385jjz1GZGRkmscCoH79+syaNYurV69y4MABChYsmGo/S5YsITo6mgYNGhAZGUmnTp343//+R/v27QH4888/2bNnDzNnznS8d1577TW6dOlCbGysY3s3FrW755576N+/P9OnT3ckz/Hx8cTFxTFu3DjHZ8R7771Ht27deOuttyhcuDBubm64uro6Xpe4uDiioqIcr1FkZCTt27fno48+4q+//nIk4dOnT+fll18mMjKSNWvWsH79evbv34+npycAw4cP56effuK7776jT58+TsfLMAzH+fbMM884nTd38pzsdjtjx47F39+f4sWL06VLFxYvXsyrr75KVFQU33zzDRMmTHC8P8eNG0elSpUcr+eBAwf45ZdfWLBgAdWqVQNg/PjxVK5cmWnTptGhQ4d0fealnDfjx4/n66+/djyPPn368J///Cfdn78DBw6kc+fOPP744wAULlyYkSNH8uCDD/L+++/f9jPkVu+9FAULFuTvv/++7XsBzMuhbrXOjb0UwOxyHxsby/Lly9U1XnKdtHotieRWVp7vKd8T7oRlSTmYXZ+feOIJihYtiqurKzVr1uSRRx5h06ZN6d7msGHDnJKLyMhIwsLCaNWqVaovnnFxcRw7dgw/Pz9Hi72/YbBzxH3ciY9/38+kVUdITqPruasN+jQK58WWZe5oW97uZkvLnXB3d2fhwoUUK1aMxMRE7HY7jzzyCP/3f/+Hr6+v40vLsmXLnK75dXd3dxyD5ORkfH19Ux2TFG5ubnh4eDiWu7u7U6VKFYKDg53W27RpE2+//Tbbt2/n0qVLjpaGy5cvExoa6oilfv36jm2VLl0aMI9/oUKFePHFFxk4cCCzZ8/m3nvvpXPnzo51Urbn4+PjePyBAwd46KGHnGJv3rw5X3zxBb6+vri6uuLi4uK0T7ie8KV8gQXzh4rw8HDHl32A0NBQLl++TEBAAIcPHyY5OdnxxThFfHw8hQoVIiAgAC8vLzw8PGjYsKHTa3i7Y+zt7U3dunXp2bMnI0eOZMWKFbi5uTleo8OHD5OYmEjLli2dHl+3bl0OHTpEQECA49g2adLEaR03NzeqVq3qNK9AgQLUrFnTMS/lvIiOjnbM+/zzz5k4cSJHjx4lNjaWhIQEqlev7nQOuLm5Oe7feI489NBDfPDBB9SsWZPWrVvTunVrHn74YUeM+/fv56233mL9+vWcP3/e8bpevHiRgIAARxJ68/G6cZ93c0xud755eXnh7+/vVPXcxcWFgIAAPD09cXV1vaPnnGLPnj2sWLGCYsWKpXqdz5w5Q82aNXFzc6NOnTppngtBQUHExcU5LUv5kQK45XvUy8vLKba0uLm58fXXXzNlyhQSEhIcIxi8+OKLuLi4pHksUrYN5nmSmJjouLTkRjNmzKBbt26OHw369OnDm2++yblz5yhdujRHjx4lLCzMcakLwL333ut4finbmzFjBp999hkHDhwgKiqKpKQkAgICHMs9PT0pXrw45cuXd9qO3W7n5MmTlClTJtXrBKQ6pxo1akSFChX49ddfGTJkCEuWLOHcuXP07NmTgIAADhw4QHR0tON8SREbG8vJkycd7/WU45WYmMiCBQv4/vvvGT16tGN/d/qcwsPDKVq0qOMx4eHh/PrrrwQEBHDo0CESEhJo1qyZ4zEBAQGUK1fOcf4dO3YMNzc3WrRo4WjJTVnnyJEjjnjv9jMv5bx59NFHee211xzrBAUFOY5Tej5/d+/ezfbt25k1a5ZjXkrr9IULF/7xMySt916KlPP0du+FlHPi5nUMw+Dq1av4+/s7fX6n/CiccvmFSG6QmJjI4sWLue+++3B3d7c6HJFMlR3O93/6sfhGliblpUuXZtmyZY6WjJRKtqVKlUr3Nj09PR2tHDdyd3dP9YIkJyc7foFPudYawO8Ou6o9Vj+ciasOp7nMAHrWD8fPy+OOY79TNpuN5s2bM378eDw8PAgNDXUqwJPyXEqXLn3LIlkFCxZk586dTs87rf2kLLfZbPj5+TmtHx0dzQMPPEDr1q2ZOnUqBQsW5OjRo7Ru3ZqkpCSn4+rp6emYvrEroIuLC2+//TY9evRg3rx5/Pbbb4wYMYLp06fz8MMPOx5z82t0Y2w3Pucb17s5XhcXF9zd3e9onmEYuLi4EBMT46gsHRsb67TNlGkXFxe8vb1TdXG83TFOedw777xD2bJlmTt3rlNV59s975vX8ff3T7UPDw+PVI+7ed6NsUyfPp3BgwczZswYGjRogL+/Px988AHr1q1zOgduPu4p9wMDA9m8eTNLly5l0aJFjBgxgnfeeYcNGzYQFBRE+/btKVGiBP/73/8IDQ3FbrdTuXLlVOfJnTzfO1nndudbyq1s2bKpjkXKl/I7ec4poqOjadeuXZoFKUNCQm55Pqa4fPkyBQsWdFp2+fJlwGxNvNV79MbjcTs9evTg9ddfx9vb2ymelMemdSzsdrujhbJgwYJcvnzZ6XEXL15kzpw5JCYm8sUXXzjmJycnM2nSJEaOHJnqWN4cs4uLC2vWrKFnz568/fbbtG7dmsDAQKZPn86YMWOcXoN/2k5ar1Na50uPHj2YNm0aw4YNY/r06dx///0ULFgQMF/HkJAQp3oRKYKCgtI8dypVqsTBgwfp378/U6ZMAbjj55TW547dbr/tuZ7y2LtZ524/8258zmm9R27c/u2O9c3ne1RUFM8884yjhf1GxYsXx8PD47afIWntN8WlS5coXbr0P74X0jpWKT8QpvWcUl4nJS+S2+i8lrzEyvP9bvabLcYp9/X1JSQkhEuXLrFw4UJH98fsrmSwL6M6VcXFBq4uNqe/ozpVJTzYN9P27evrS0REBMWLF09XRdwaNWqwZ8+euy4wd6M9e/Zw4cIF3n//fZo0aUL58uWdirzdjbJly/Liiy+yaNEiOnbsyMSJE2+5boUKFVi1apXTvFWrVlG2bNkMv/avRo0aJCcnc/bsWUqVKkVERITjdmPho1s99p+OcVhYGAMGDOC1115zKrRUunRpPDw8nJ5nYmIiGzZsoGLFiv/+id1k1apVNGzYkOeee44aNWoQERHhVIjtTri5udGyZUtGjx7N9u3bOXz4MH/++ScXLlxg7969vPHGG9x7771UqFCBS5cuOT025ZKIm4tN3Sirj0laPDw8UsVYs2ZN/vrrL8LDw53Oj4iICHx9//kzYOfOnY6u9jfOc3d3p1KlSv865sDAQCIiIihatOg/Ji1pqVGjBrt27XKaN3XqVIoVK8a2bdvYunWr4zZmzBgmTZpEcnIyFSpU4NixY5w6dcrxuLVr1zptZ/Xq1ZQoUYLXX3+d2rVrU6ZMmVRDBYJZ5T3lGvGU7bi4uDha4dN6XdLy6KOPsnPnTjZt2sSsWbPo0aOHY1nNmjU5ffo0bm5uqV7Hm3sI3Wjo0KHMmDGDzZs339Vzup3SpUvj7u7OunXrHPMuXbrEvn37HPcrVKhAUlKS0zop77XMfD+k9/O3Zs2a7Nq1K9WxjYiIcLz/b/UZArd/jdN6D4mIiOQkliblCxcuZMGCBRw6dIjFixfTvHlzypcv77jm7OLFi2zdutXxhXDv3r1s3brVaaxtq3WpHcafLzfj6aalaFs1lKebluLPl5vRpXbYPz84k509e5bTp0873VIKDjRv3pyoqCinoZjuVkrrxrhx4zh48CBz586963GrY2NjGTBgAEuXLuXIkSOsWrWKDRs2UKFChVs+5uWXX+aPP/7g3XffZd++fUyePJnPPvuMV155Jd3P5VbKli1Ljx496NOnD7/88guHDh1i/fr1vPfee45idrdyp8d42LBhnDx50qkomK+vL/369WPw4MEsWLCAXbt20bdvX2JiYtIcmurfKlOmDBs3bmThwoXs27eP4cOH39W407/++iuffvopW7du5ciRI3z77bfY7XbKlStHvnz5KFCgAF9++SV///03f/75p9MlJmBeZ+7t7c2CBQs4c+aMo7L2jbL6mKQlPDycdevWcfjwYUc3/P79+3Px4kUeeeQRNmzYwIEDB1i4cCGPP/74HSWKK1asoFWrVqnmpVSpzmyGYaT6nDh9+rSjBbF169b89ddfTj+kfP3113Tu3JnKlSs73Z588knOnz/PggULaNmyJWXLlqV3795s27aNFStWOF1TD+Z5d/ToUaZPn86BAwf49NNP+emnn1LF6OXl5bSdgQMH0rVrV8cPY+Hh4Wzfvp29e/dy/vz5WxZWCQ8Pd1RMT05O5qGHHnIsa9myJQ0aNKBDhw4sWrSIw4cPs3r1al5//fVU3ftvFBYWxsMPP+wY4vBOn9Pt+Pn58eSTTzJ48GD+/PNPdu7cSZ8+fZx+VClTpgzt27enb9++rFy5km3btvHYY49RtGjRTP1hO72fv0OGDHEUhdu6dSv79+/n559/ZsCAAcDtP0Mg7fcewOHDhzlx4kSWjtIiIiKS0SxNyq9cuUL//v0pX748vXr1onHjxixcuNDR1D937lxq1KjhGFKqe/fu1KhRw6m7ZHYQHuzLkPvLM+6RGgy5v3ymtpDfjXLlyhESEuJ0S7lev0CBAjz88MNMnTo13dsvWLAgkyZN4ocffqBixYq8//77fPjhh3e1DVdXVy5cuECvXr0oW7YsXbt25YEHHkizWF+KmjVrMnPmTKZPn07lypV58803eeedd5wq/2akiRMn0rNnT9544w0qVKhAhw4d2LBhQ6pCeje702OcP39+hgwZQlxcnNP8999/n06dOtGzZ09q1qzJ33//zcKFCx0V1jPSM888Q8eOHenWrRv16tXjwoULPPfcc3f8+KCgIH788UdatGhBhQoV+OKLL5g2bRqVKlVydI/ftGkTlStX5sUXX+SDDz5werybmxuffvopEyZMIDQ09JZJRVYek7S88soruLq6UrFiRcflGqGhoaxatYrk5GRatWpFlSpVGDRokKPL8+2kVCW/sWAiwPTp0+nbt29mPhWHlEuHbrwVLVqUc+fOAVClShXHew7MOhLbtm2jU6dOqbYVGBjIvffey9dff42Liws//fQTsbGx1K1bl6eeeoqRI0c6rf/QQw/x4osvMmDAAKpXr87q1asd1bpvFBERQceOHWnTpg2tWrWiatWqfP75547lffv2pVy5ctSuXZuCBQumasm9UY8ePdi2bRsPP/yw048eNpuN+fPn07RpUx5//HHKli1L9+7dOXLkiNMQcWl58cUXmTdvHuvXr7/j5/RPPvjgA5o0aUK7du1o2bIljRs3platWk7rTJw4kVq1avHggw/SoEEDDMNg/vz5mdpNL72fv1WrVmXZsmXs27ePJk2aUKNGDd58803Hte23+wyBtN97ANOmTaNVq1aUKFEi056ziIhIZrMZ/6b/cg4QGRlJYGBgmhWG4+LiOHToECVLlsyThVy2b9/Offfdx4EDB5yKFElqKdfYBgQE3FUXYB1juZ1u3bpRrVo1p4Jav/32Gy+//DLbt2+/7aUpkyZNYtKkSWleA/1v3Xy+z5s3j8GDB/9jHYrMMGLECObMmcPWrVuzdL+S/SUkJFCmTBm+//57x4gMt2Kz2Th06FCqIQZv9dme178fSO6UmJjI/PnzadOmja4pl1wvO5zvt8tDb5YtrikXa1StWpVRo0Zx6NAhq0PJtXSM5VYSEhKoUqUKL774otP86OhoJk6cmK5aEZmlbdu2PP3005w4ccLqUEQcjh49ymuvvfaPCbmIiEh2l32+9YklMqvLt1ynYyxp8fDw4I033kg1/+au7NnFoEGDrA5BxElKoTgREZGcTi3lIiI5UPXq1fPEDz4jRoxQ13X51956661bDhEqIiJiNbWUi4jkQNWrV6d69epWhyGSI4wYMcLqEEQkL7pwALZMgctHIag41OgJBUpbHVXOlkuPqZJyERERERGRjLTlO5j7PGADDPPvqrHw0GdQo4fFweVQufiYKikXERERERHJKBcOmMmjYU+9bG5/cPOCgNCsjysnu3IC5g6AtAYOmzsAitfP0S3mSspFREREREQyypYpmK25aTAMmP1EloaT+9nMY95yhNWBpJuSchERERERkYxy+Shm9+pb8PAD/yJZFk6ucPU0JETdYqFx7ZjnXErKRUREREREMkpQcW7ZUm5zhbp9c3SrriV+HwGrPgUjOY2FtmvHPOfSkGh5yIgRI7KsWnOfPn3o0KFDluwrKyxdupR8+fJx+fJlq0MRERERkeysavdbJI8AhlkxXO5OjZ7cuvdBzj+mSspzuDVr1uDq6krbtm0t2f/hw4ex2WypxhEeO3YskyZNytB9hYeHY7PZsNls+Pj4UKVKFb766qsM3YfVli5d6niON97eeOMNy2PSDxIiIiIid2DXz9enba5gc7n+96HPcnRBMssUKG0euxuPZS46puq+nhEsHC/v66+/5vnnn+frr7/m5MmThIZmj0qOgYGBmbLdd955h759+xITE8MPP/xA3759KVq0KA888ECm7M8qe/fuJSAgwHHfz88vXdtJTk7GZrPh4qLf30REREQy3emdsPwDc7r1/0H0uVw3prZlavQwq6znwnHK9U3939ryHXxW27zG4a+fzL+f1YYtUzN911FRUcyYMYN+/frRtm3bVC3T77//PoULF8bf358nn3ySuLg4p+UbNmzgvvvuIzg4mMDAQO655x42b97stI7NZmP8+PE88MADeHt7U6pUKWbNmuVYXrJkSQBq1KiBzWajWbNmgHP39S+//JLQ0FDsdudhIdq3b88TT1yvPvnzzz9Ts2ZNvLy8KFWqFG+//TZJSUlOj/H396dIkSKUKlWKIUOGkD9/fhYvXnzXz+mrr77i4YcfxsfHhzJlyjB37lyndebPn0/ZsmXx9vamefPmHD58ONXxnz17NpUqVcLT05Pw8HDGjBnjtDw8PJz//Oc/9OrVCz8/P0qUKMHcuXM5d+4c7du3x8/Pj6pVq7Jx48ZU2y5UqBBFihRx3FKS8kuXLtGrVy/y5cuHj48PDzzwAPv373c8btKkSQQFBTF37lwqVqyIp6cnR48eJT4+nldeeYWiRYvi6+tLvXr1WLp0qeNxR44coV27duTLlw9fX18qVarE/PnzOXz4MM2bNwcgX7582Gw2+vTpkypeERERkTwvORF+fg7siVCuLdR/zrx2vPM35t9ckDxarkDpXHlMlZTfzDAgIfrObqd3XB+D0Eh2/jt3gPlL2Z1uK60x9/7BzJkzKV++POXKleOxxx7jm2++wbi2nZkzZzJixAj+7//+j40bNxISEsLnn3/u9PirV6/Su3dvVq5cydq1aylTpgxt2rTh6tWrTusNHz6cTp06sW3bNnr06EH37t3ZvXs3AOvXrwfg999/59SpU/z444+p4uzSpQsXLlxgyZIljnkXL15kwYIF9OjRA4AVK1bQq1cvXnjhBXbt2sWECROYNGkSI0eOTPO52+12Zs+ezaVLl/Dw8Ljr5/T222/TtWtXtm/fTps2bejRowcXL14E4NixY3Ts2JF27dqxdetWnnrqKV577TWnx2/atImuXbvSvXt3duzYwYgRIxg+fHiqH0Y+/vhjGjVqxJYtW2jbti09e/akV69ePPbYY2zevJnSpUvTq1cvx+v2T/r06cPGjRuZO3cua9aswTAM2rRpQ2JiomOdmJgYRo0axVdffcVff/1FoUKFGDBgAGvWrGH69Ols376dLl26cP/99zsS+v79+xMfH8/y5cvZsWMHo0aNws/Pj7CwMGbPng2YrfenTp1i7NixdxSriIiISJ6yaiyc2gZeQfDgR2C7RbE3kZsZudyVK1cMwLhy5UqqZbGxscauXbuM2NjY6zPjowzjrYCsv8VH3fVza9iwofHJJ58YhmEYiYmJRnBwsLFkyRLDMAyjQYMGxnPPPee0fr169Yxq1ardcnvJycmGv7+/8csvvzjmAcazzz6bajv9+vUzDMMwDh06ZADGli1bnNbp3bu30b59e8f99u3bG0888YTj/oQJE4zQ0FAjOTnZMAzDuPfee43/+7//c9rGlClTjJCQEMf9EiVKGB4eHoavr6/h5uZmAEb+/PmN/fv33/VzeuONNxz3o6KiDMD47bffDMMwjGHDhhkVK1Z02s6rr75qAMaFCxcMwzCMRx991Ljvvvuc1hk8eLDT40qUKGE89thjjvunTp0yAGP48OGOeWvWrDEA49SpU4ZhGMaSJUsMwPD19XW6nT9/3ti3b58BGKtWrXI8/vz584a3t7cxc+ZMwzAMY+LEiQZgbN261bHOkSNHDFdXV+PEiRNO8d57773GsGHDDMMwjCpVqhgjRoxI8ximxHTp0qU0l0vuk5ycbFy6dMnx/hTJrW51rqf5/UAkh0tISDDmzJljJCQkWB1K7nRml2G8E2x+r986zepo8rzscL7fLg+9mVrKc6i9e/eyfv16HnnkEQDc3Nzo1q0bX3/9NQC7d++mXr16To9p0KCB0/0zZ87Qt29fypQpQ2BgIAEBAURFRXH06NHbPq5BgwaOlvI71aNHD2bPnk18fDwAU6dOpXv37o5rnbdt28Y777yDn5+f49a3b19OnTpFTEyMYzuDBw9m69at/Pnnn9SrV4+PP/6YiIiIu35OVatWdUz7+voSEBDA2bNnb3ns6tev73R/9+7dNGrUyGleo0aN2L9/P8nJ16tt3rifwoULA1ClSpVU81L2nWLFihVs3brVccuXLx+7d+/Gzc3NKbYCBQpQrlw5p9fDw8PDab87duwgOTmZsmXLOh3fZcuWceDAAQAGDhzIf/7zHxo1asRbb73F9u3bEREREZE7kJwEc56D5AQoez9U7WZ1RJLDqNDbzdx94LWTd7bukv+DtePTHvLA5gr1+0Hz11Ivu9V+78LXX39NUlKSU2E3wzDw9PTks88+u6Nt9O7dmwsXLjB27FhKlCiBp6cnDRo0ICEh4a5iuRPt2rXDMAzmzZtHnTp1WLFiBR9//LFjeVRUFG+//TYdO3ZM9VgvLy/HdHBwMBEREURERPDDDz9QpUoVateuTcWKFe/qObm7uzvdt9lsqa55zwg37sd2rQtTWvNu3nfJkiUJCgpK1z69vb0d2wXz2Lq6urJp0yZcXV2d1k25Vv2pp56idevWzJs3j0WLFvHee+8xZswYnn/++XTFICIiIpJnrBkHJzeDZyA8+LG6rctdU0v5zWw28PC9s1vtJ7jteHm1n7jzbd3FmzcpKYlvv/2WMWPGOLWmbtu2jdDQUKZNm0aFChVYt26d0+PWrl3rdH/VqlUMHDiQNm3aOAqWnT9/PtX+bn7c2rVrqVChAoDjeu4bW4fT4uXlRceOHZk6dSrTpk2jXLly1KxZ07G8Zs2a7N2715Fw33i7VeXwsLAwunXrxrBhw+76Od1OhQoVHNfKp7j5WFaoUIFVq1Y5zVu1ahVly5ZNlfhmlAoVKpCUlOQUy4ULF9i7d6/jR4m01KhRg+TkZM6ePZvq2BYpUsSxXlhYGM8++yw//vgjL7/8Mv/73/+AO3+NRURERPKcc3vNhjqA+9+DgOwxEpLkLGop/zdSxsubOwCwYSbo1/5m4nh5v/76K5cuXeLJJ59MNfRYp06d+Prrr3nllVfo06cPtWvXplGjRkydOpW//vqLUqVKOdYtU6YMU6ZMoXbt2kRGRjJ48GC8vb1T7e+HH36gdu3aNG7cmKlTp7J+/XpHN/lChQrh7e3NggULKFasGF5eXrccDq1Hjx48+OCD/PXXXzz22GNOy958800efPBBihcvTufOnXFxcWHbtm3s3LmT//znP7c8Fi+88AKVK1dm48aN1K5d+46f0+08++yzjBkzhsGDB/PUU0+xadMmJk+e7LTOyy+/TJ06dXj33Xfp1q0ba9as4bPPPktVTC8jlSlThvbt29O3b18mTJiAv78/Q4cOpWjRorRv3/6Wjytbtiw9evSgV69ejBkzhho1anDu3Dn++OMPqlatStu2bRk0aBAPPPAAZcuW5dKlSyxZssTxw0uJEiWw2Wz8+uuvtGnTBm9v73QP0SYiIiKSa9iTr3dbj7gPqj9qdUSSQ6ml/N+q0QMGbIRGA6HSw+bfARvN+Znk66+/pmXLlmkmv506dWLjxo1UqFCB4cOH8+qrr1KrVi2OHDlCv379Um3n0qVL1KxZk549ezJw4EAKFSqUaptvv/0206dPp2rVqnz77bdMmzbN0TLr5ubGp59+yoQJEwgNDb1tctiiRQvy58/P3r17efRR5w+t1q1b8+uvv7Jo0SLq1KlD/fr1+fjjjylRosRtj0XFihVp1aoVb7755l09p9spXrw4s2fPZs6cOVSrVo0vvvgi1Q8DNWvWZObMmUyfPp3KlSvz5ptv8s4772T6cGETJ06kVq1aPPjggzRo0ADDMJg/f36q7vhpPa5Xr168/PLLlCtXjg4dOrBhwwaKFy8OmK3g/fv3p0KFCtx///2ULVvW8QND0aJFefvttxk6dCiFCxdmwIABmfocRURERHKENf+FExvBMwDafaJu65JuNsNIx1hcOUhkZCSBgYFcuXKFgIAAp2VxcXEcOnSIkiVLOl23LNfZbDZ++uknx5jjeZXdbicyMpKAgIBbdqcXyS10vktecatzXd8PJDdKTExk/vz5tGnT5h9/zJc7cH4/fNEYkuLgoXFQs5fVEckNssP5frs89Gb6tiUiIiIiInKn7Mnwc38zIS/dAmr0tDoiyeGUlIuIiIiIiNypdRPg2Drw8Id2n6rbuvxrKvQmt5XLr24QEREREblzFw7AH++Y063egaAwa+ORXEEt5SIiIiIiIv/EboefB0BSLJRsCrUetzoiySWUlKPWYBEREblO3wtEJE0b/gdHV4O7rzn8sbqtSwbJ00l5SiW+mJgYiyMRERGR7CLle4EqVIuIw8WD8PsIc/q+tyHf7YftFbkbefqacldXV4KCgjh79iwAPj4+2PSLl6TBbreTkJBAXFychoiSXE/nu+QVN5/rhmEQExPD2bNnCQoKwtXV1eoQRSQ7sNth7kBIjIHwJlD7SasjklwmTyflAEWKFAFwJOYiaTEMg9jYWLy9vfXDjeR6Ot8lr7jVuR4UFOT4fiAiwsav4fAKcPcxxyTXD9aSwfJ8Um6z2QgJCaFQoUIkJiZaHY5kU4mJiSxfvpymTZuqO6PkejrfJa9I61x3d3dXC7mIXHfpCCx+y5xuOQLyl7Q0HMmd8nxSnsLV1VX/hOWWXF1dSUpKwsvLS0mK5Ho63yWv0LkuIrdlGDD3eUiMhuINoU5fqyOSXEp9L0RERERERG62aRIcWgZu3tD+M3Vbl0yjM0tERERERORGl4/BouHm9L3DoUBpa+ORXE1JuYiIiIiISArDgF8GQsJVCKsH9Z61OiLJ5ZSUi4iIiIiIpNgyBQ78CW5e0P6/4KK6U5K5lJSLiIiIiIgAXDkBC183p5u/DsFlrI1H8gQl5SIiIiIiIoYBv7wA8ZFQrA406G91RJJHKCkXERERERHZ+j38vRhcPdVtXbKUknIREREREcnbIk/CgmHmdPNhULCctfFInqKkXERERERE8i7DgF9fhPgrEFoTGjxvdUSSxygpFxERERGRvGv7TNi3AFw9zG7rrm5WRyR5jJJyERERERHJm66eht9eNafveRUKV7Q2HsmT9DOQiIiIiIjkPYYBv74EcZchpBo0GmR1RPIPDp2PZubGYxy/FEuxfN50rR1GyWBfq8P615SUi4iIiIhI3rNzNuydBy7u0P5zcHW3OiK5jZkbjzF09nZsNhuGYWCz2Ziw7ACjOlWlS+0wq8P7V9R9XURERERE8paoszD/FXO66WAoUtnaeOS2Dp2PZujs7dgNSLYbTn+HzN7O4fPRVof4r6ilXERERERE8g7DgHkvQewlKFIFmrxkdURyjd1ucDU+icjYRK7GJREZl0hkbCLTNxzDuMVjbDYbMzYeY8j95bM01oykpFxERERERPKOv36C3b+Ai5u6rWewhCQ7V+MSiYxLnVinPW3+vXpt/aiEJIxbZd+3YBgGxy/FZs4TyiJKykVEREREJG+IPn+923qTlyGkqrXxZCOGYRCbmExkbNK1xPp60nynSXZcoj1DYvF0cyHA250ALzf8vdy5EBXP8UuxabaW22w2iuXzzpD9WkVJuYiIiIiI5A3zX4GYC1CoEjR5JVN3ldWVwm/s+n1j63Nk3LUk29EqfVML9Q2JdZL9Lpupb8Hf0w1/L7dribX7DdNmkh3g7XZt/o3T5jr+Xm54urk6be/Q+WjuHbM0zVZ0wzDolsMLvSkpFxERERGR3G/Xz2bXdZsrdPgvuHlk2q7SUyk8Icl+UzJ9q+mbk+xrrdjxSRkSu6uLLVXy7JxY3zrJDvByx8/LDVcXW4bEkqJksC+jOlVlyE3H1DAMRnWqSngOHxZNSbmIiIiIiORu0Rdg3svmdONBEFoj03Z1Y6VwR9Putb+DZ21n/o5TJBtcS6yvJ9mZ1fU77eQ5rQTbnPbxcMVmy9ikOiN0qR1GnfD8zLih90G32mE5PiEHJeUiIiIiIpLbLRgC0eegYHm4Z0im7mrmxmNmUnuLimVL9p677eMzuut3bhIe7Jujq6zfipJyERERERHJvXb/Cjt+AJsLdPgc3DwzdXfHL8Vi3CIhtwEVQwN4vFHJLOv6LdmfknIREREREcmdYi7Cry+a0w0HQtFamb7LYvm8b9lS7uJio2nZgnSuVSzT45Ccw8XqAERERERERDLFgmEQfRaCy0KzYVmyy661w27ZUp4bKoVLxlNSLiIiIiIiuc/eBbB9utltvf3n4O6VJbstGexLh+pFHfddbGZFcxcbuaJSuGQ8dV8XEREREZHcJfYS/DrInG7QH8LqZOnu95+NAqBh6QIU8PPMVZXCJeMpKRcRERERkdxl4etw9RQUiIDmr2fprv86eYUdJ67g7mrjs0drkt8388ZDl9xB3ddFRERERCT32L8Ytk4FbND+v+DunaW7n7nhGACtKhVRQi53REm5iIiIiIjkDnFXYO5Ac7p+PyheP2t3n5jMT1tOAKigm9wxJeUiIiIiIpI7LHoDrp6EfCWhxfAs3/3Cv04TGZdE0SBvGkcEZ/n+JWdSUi4iIiIiIjnf33/A5m8BG3T4HDx8sjyE6evNrutdahfDxcWW5fuXnElJuYiIiIiI5Gxxkde7rdd9Gko0zPIQjlyIZs3BC9hs0EVd1+UuKCkXEREREZGcbfGbEHkc8oVDy7csCWHmRrOVvGmZghQNytricpKzKSkXEREREZGc6+BS2DTRnH7oM/DI+rHAk5Lt/LDxOADd6qiVXO6OknIREREREcmZ4q/Cz8+b03WegpJNLAlj2b5znL0aT35fD1pWKGxJDJJzKSkXEREREZGc6fcRcOUoBBaHlm9bFsb0a2OTd6xRFA83pVhydyw/Y65evcqgQYMoUaIE3t7eNGzYkA0bNjiWG4bBm2++SUhICN7e3rRs2ZL9+/dbGLGIiIiIiFju0ArY8JU53X4cePpZEsbZq3H8uecsoK7rkj6WJ+VPPfUUixcvZsqUKezYsYNWrVrRsmVLTpw4AcDo0aP59NNP+eKLL1i3bh2+vr60bt2auLg4iyMXERERERFLJETDz/3N6VqPQ6lmloUye9MJku0GNYsHUaawv2VxSM5laVIeGxvL7NmzGT16NE2bNiUiIoIRI0YQERHB+PHjMQyDTz75hDfeeIP27dtTtWpVvv32W06ePMmcOXOsDF1ERERERKzy+9tw+QgEFIP73rEsDMMwHFXXu9cpblkckrO5WbnzpKQkkpOT8fLycprv7e3NypUrOXToEKdPn6Zly5aOZYGBgdSrV481a9bQvXv3VNuMj48nPj7ecT8yMhKAxMREEhMTM+mZSG6Xcu7oHJK8QOe75BU61yUvyU3nu+3oatzWTwAgqe3HGK7eYNHzWn/4IofOR+Pr4UqrCsG54vjmBtnhfL+bfVualPv7+9OgQQPeffddKlSoQOHChZk2bRpr1qwhIiKC06dPA1C4sHMFw8KFCzuW3ey9997j7bdTF3lYtGgRPj4+Gf8kJE9ZvHix1SGIZBmd75JX6FyXvCSnn++u9nia7X4dP+BIgXvYuicW9sy3LJ7v9rsALlQNSmTZH4ssi0PSZuX5HhMTc8frWpqUA0yZMoUnnniCokWL4urqSs2aNXnkkUfYtGlTurY3bNgwXnrpJcf9yMhIwsLCaNWqFQEBARkVtuQxiYmJLF68mPvuuw93d3erwxHJVDrfJa/QuS55SW45310Wv4FrwlkM/1BC+0wk1Mu67/eRsYkM2bgMsPNSh/pUDwuyLBZxlh3O95Qe23fC8qS8dOnSLFu2jOjoaCIjIwkJCaFbt26UKlWKIkWKAHDmzBlCQkIcjzlz5gzVq1dPc3uenp54enqmmu/u7p6jP4Ake9B5JHmJznfJK3SuS16So8/3o2vhWrd120Of4u5fwNJw5m86SVyinbKF/ahdMhibzWZpPJKalef73ezX8urrKXx9fQkJCeHSpUssXLiQ9u3bU7JkSYoUKcIff/zhWC8yMpJ169bRoEEDC6MVEREREZEskxh7rdq6AdV7QJn7rI6ImdfGJu9Wp7gScvlXLG8pX7hwIYZhUK5cOf7++28GDx5M+fLlefzxx7HZbAwaNIj//Oc/lClThpIlSzJ8+HBCQ0Pp0KGD1aGLiIiIiEhWWDISLvwNfkWg9Uiro2HniSvsOHEFd1cbD9coanU4ksNZnpRfuXKFYcOGcfz4cfLnz0+nTp0YOXKko7n/1VdfJTo6mqeffprLly/TuHFjFixYkKpiu4iIiIiI5ELHNsCa/5rT7T4B73yWhgM4hkFrVakI+X09LI5GcjrLk/KuXbvStWvXWy632Wy88847vPOOdeMPioiIiIiIBRLj4OfnwLBD1e5Q7gGrIyIuMZk5W04A0L1OmMXRSG6Qba4pFxERERERcbL0PTi/D/wKw/3vWR0NAAt2niYyLomiQd40Kh1sdTiSCygpFxERERGR7OfEJlj9qTn94Mfgk9/aeK6Zca3AW9faYbi4qMCb/HtKykVEREREJHtJioc517qtV+4M5dtaHREARy5Es+bgBWw26Fy7mNXhSC6hpFxERERERLKXZaPh3B7wLQgPjLY6GoeUAm9NyxSkaJC3xdFIbqGkXEREREREso+TW2Dlx+Z02zHgW8DaeK5JSrbzw8bjgAq8ScZSUi4iIiIiItlDUgLM6Q9GMlR6GCq2tzoih6V7z3H2ajwFfD24t0Jhq8ORXERJuYiIiIiIZA8rPoSzf4FPAWjzodXROJlxret6x5pF8XBTGiUZR2eTiIiIiIhY79R2WDHGnG7zIfhmn+HGzkbG8eeeswB0U9d1yWBKykVERERExFrJiWa1dXsSVHjI7LqejczefIJku0GtEvmIKORvdTiSyygpFxERERERa634CM7sAO/8ZnE3W/YZ/9swDGZsOApAt9pqJZeMp6RcRERERESsc3onLP/AnG7zAfgVsjaem6w7dJHDF2Lw9XClbdUQq8ORXEhJuYiIiIiIWCM5EX5+DuyJUK4tVO5kdUSpzNxgFnh7qHoovp5uFkcjuZGSchERERERscaqsXBqG3gFwYMfZatu6wBXYhOZt+MUAF3VdV0yiZJyERERERHJemd3w7JR5vQDo8C/iLXxpGHutpPEJ9kpV9if6mFBVocjuZSSchERERERyVrJSWa19eQEKHs/VO1mdURpSinw1rVOGLZs1oovuYeSchERERERyVprxsHJzeAVCA9+ku26rQPsPHGFnSci8XB14eEaRa0OR3IxJeUiIiIiIpJ1zu2FJe+Z063fg4DsWdF85kazwFurSoXJ7+thcTSSmykpFxERERGRrGFPvtZtPR4i7oPqj1odUZriEpP5acsJALrVUYE3yVxKykVEREREJGus+S+c2AieAdBubLbstg6wYOdprsYlUTTIm0alg60OR3I5JeUiIiIiIpL5zu+HJSPN6dYjITD7Xqc9PaXAW+0wXFyy5w8HknsoKRcRERERkcxlT4af+0NSHJRuATV6Wh3RLR0+H83agxex2aBL7WJWhyN5gJJyERERERHJXOsmwLF14OEP7T7Ntt3W4XqBt6ZlChIa5G1xNJIXKCkXEREREZHMc+EA/PGOOd3qHQjKvoXTkpLtzNp0HIDuKvAmWURJuYiIiIiIZA67HX4eAEmxULIp1Hrc6ohua+nec5y9Gk8BXw/urVDY6nAkj1BSLiIiIiIimWPD/+DoanD3hYc+y9bd1gGmbzC7rnesWRQPN6VKkjV0pomIiIiISMa7eAh+H2FO3/c25CthaTj/5GxkHEv2ngU0NrlkLSXlIiIiIiKSsex2mPs8JMZAeBOo/aTVEf2jWZuPk2w3qFUiHxGF/K0OR/IQJeUiIiIiIpKxNn4Nh1eAuw88NA5csnfaYRgGM691XVcruWS17P3uEBERERGRnOXSEVj8ljndcgTkL2lpOHdi3aGLHL4Qg6+HK22rhFgdjuQxSspFRERERCRjGMa1buvRULwh1OlrdUR3ZMa1VvKHqofi6+lmcTSS1ygpFxERERGRjLFpEhxaBm7e0P6zbN9tHeBKbCLzd5wCoFud4hZHI3lR9n+XiIiIiIhI9nf5GCwabk7fOxwKlLY2njs0d+sJ4pPslCvsT7VigVaHI3mQknIREREREfl3DAN+GQgJVyGsHtR71uqI7tiMjdcLvNmy+TjqkjspKRcRERERkX9nyxQ48Ce4eUH7/4KLq9UR3ZGdJ66w80QkHq4uPFyjqNXhSB6lpFxERERERNLvyglY+Lo53fx1CC5jbTx3IaXAW6tKhcnn62FxNJJXKSkXEREREZH0MQz45QWIj4RidaBBf6sjumNxicnM2XoCgO4q8CYWUlIuIiIiIiLps/V7+HsxuHrmqG7rAL/tPMXVuCSK5fOmYekCVocjeZiSchERERERuXuRJ2HBMHO6+TAoWM7aeO5SStf1rrXDcHFRgTexjpJyERERERG5O4YBv74I8VcgtCY0eN7qiO7KofPRrD14EZsNOtcqZnU4kscpKRcRERERkbuzfSbsWwCuHma3dVc3qyO6KzOvDYN2T9mChAZ5WxyN5HVKykVERERE5M5dPQ2/vWpO3zMECle0Np67lJRsZ9am4wB0qx1mcTQiSspFREREROROGQb8+hLEXYaQatDoBasjumtL9p7j3NV4Cvh6cG+FwlaHI6KkXERERERE7tDO2bB3Hri4Q/vPwdXd6ojuWkqBt061iuHhpnRIrKezUERERERE/lnUWZg/2JxuOhiKVLY2nnQ4ExnHkr1nAbPqukh2oKRcRERERERuzzBg3ksQexGKVIEmL1kdUbrM2nScZLtB7RL5iCjkZ3U4IoCSchERERER+Sd//QS7fwEXtxzbbd0wDEfV9a511Eou2YeSchERERERubXo8zD/FXO6ycsQUtXaeNJp7cGLHLkQg5+nG22rhFgdjoiDknIREREREbm1+a9AzAUoVAmavGJ1NOmW0krerloovp45a1x1yd2UlIuIiIiISNp2/Wx2Xbe5Qof/gpuH1RGly5XYRObvOAVAN3Vdl2xGSbmIiIiIiKQWfQHmvWxON34RQmtYG8+/MHfrCeKT7JQv4k+1YoFWhyPiREm5iIiIiIiktmAIRJ+DghXgnletjuZfmX5tbPKutcOw2WwWRyPiTEm5iIiIiIg42zMPdvwANpdr3dY9rY4o3XaeuMJfJyPxcHXh4RpFrQ5HJBVVOBAREREREbhwALZMgfN/w4E/zHkNB0LRWtbG9S/NuNZK3qpSYfL55sxr4iV3U1IuIiIiIpLXbfkO5j4P2MBIvj4/X0nLQsoIcYnJzNl6AoDudYpbHI1I2tR9XUREREQkL7twwEzIDbtzQg4w70VzeQ71285TXI1Lolg+bxqWLmB1OCJpUlIuIiIiIpKXbZkC3Kr4me3a8pxp+vrrBd5cXFTgTbInJeUiIiIiInnZ5aOAcYuFxrXlOc+h89GsO3QRFxt0rlXM6nBEbklJuYiIiIhIXhZUnNu2lAflzGuxZ240W8mbli1IaJC3xdGI3JqSchERERGRvKxGT/N68jQZ5vIcJinZzqxNxwHoXifM4mhEbk/V17OBQ+ejmbnxGMcvxVIsnzdda4dRMtjX6rBEREREJC9w9wEXV7AnmeOSA2bLuQEPfQYFSlsZXbos2XuOc1fjKeDrQYvyha0OR+S20pWUL1myhObNm2d0LHnSzI3HGDp7OzabDcMwsNlsTFh2gFGdqtKltn7VExEREZFMtvIjMyEvUh1KN4crR80u6zV65siEHGDGBvM6+E61iuHhps7Bkr2lKym///77KVasGI8//ji9e/cmLEzJY3ocOh/N0NnbsRuAca24xrW/Q2Zvp054fsLVYi4iIiIimeXyMdg0yZxu9Q6UusfScDLCmcg4luw9B5hV10Wyu3T9bHTixAkGDBjArFmzKFWqFK1bt2bmzJkkJCRkdHy52syNx7DZ0i6qYbPZmHGtOIWIiIiISKZY8SEkJ0B4k1yRkAPM2nScZLtB7RL5iCjkZ3U4Iv8oXUl5cHAwL774Ilu3bmXdunWULVuW5557jtDQUAYOHMi2bdsyOs5c6filWAwj7eEnDMPg+KXYLI5I5BYuHIDfR8CsJ8y/Fw5YHZGIiIj8W5cOw5bvzOnmr1saSkax2w1H1fVuKvAmOcS/LvRWs2ZNihQpQoECBXj//ff55ptv+Pzzz2nQoAFffPEFlSpVyog4c6Vi+bzNlvI0EnMbNorl09ANkg1s+Q7mPo+j4As2WDXWLPxSo4fFwYmIiEi6LfvAvJa8dAso0cDqaDLEukMXOXIhBj9PN9pWDbE6HJE7ku6qB4mJicyaNYs2bdpQokQJFi5cyGeffcaZM2f4+++/KVGiBF26dMnIWHOdrrXDbtlSnmwYdK1VLIsjErnGngzxUXBsvZmQG3Ywkp3/zh2gFnMREZGc6sIB2DbNnM4lreRwvcBbu2qh+HhooCnJGdJ1pj7//PNMmzYNwzDo2bMno0ePpnLlyo7lvr6+fPjhh4SGht52O8nJyYwYMYLvvvuO06dPExoaSp8+fXjjjTcc11qfOXOGIUOGsGjRIi5fvkzTpk0ZN24cZcqUSU/o2UrJYF9GdarKkBuqrwNm4Tfgp60neem+shZGmINdOABbpsDlnF89NBXDMK/9SoyBhBhIjIXEaPNvwrW/iTHXbmnMS4hxXp7WdpLi7iAQm3mMW47I7GcsIiIiGW3ZKPOH9jKtoVhtq6PJEFdiEvlt52lAY5NLzpKupHzXrl2MGzeOjh074unpmeY6wcHBLFmy5LbbGTVqFOPHj2fy5MlUqlSJjRs38vjjjxMYGMjAgQMxDIMOHTrg7u7Ozz//TEBAAB999BEtW7Zk165d+Prm/MrkXWqHUSc8PzNuGKfc292Fjxbv59M/9lMkwItH6xW3Osycxeru1vbkNJLgGxLetBLjO06mr903kjP/efwTIxkO/AlNXwUPH6ujERERkTt1bi9sn2lON3/N2lgy0M/bThCfZKd8EX+qFgu0OhyRO5aupPyPP/745w27uXHPPbev4Lh69Wrat29P27ZtAQgPD2fatGmsX78egP3797N27Vp27tzpuDZ9/PjxFClShGnTpvHUU0+lJ/xsJzzYlyH3l3eal5Rs8Omff/PGnB0U8vekZcXCFkWXw1w4cL279c3mDoDi9SGw2F23KLvER1Ht6D5cf55rtiLfLpm+o1bmDOLiDu4+ZlLs7g3uvuZfDx9zvnvKfJ/U8zx8b/GYG+YtGw2rP731jwCntsEnlaHes1C3L3jny7rnLiIiIumz9D3AgPIPQmh1q6PJMNPXXy/wdqsRjkSyo3Ql5e+99x6FCxfmiSeecJr/zTffcO7cOYYMGXJH22nYsCFffvkl+/bto2zZsmzbto2VK1fy0UcfARAfHw+Al5eX4zEuLi54enqycuXKNJPy+Ph4x+MAIiMjAfMa+MTExLt7ohYa0KwkJy7HMHvzSQZM28y3j9emRliQ1WFley6bJuOCjbQ+hg3DDuNqprnsn7gC4QAX7u5xxo1Jsbv3Dfd9HfMNd+8b1vG5YZ7zutcfe8PjXd3T8WzuQtXuuK0eC+B03IyUOf6h2K6egCUjMVZ9gr1Gb+x1+0GACqvkZCmflTnpM1MkPXSuS16Scp4nndyO+18/mfMaD4Zccv7/dTKSXacicXe10bZyIb2v87js8Pl+N/u2GbeqNHYb4eHhfP/99zRs2NBp/rp16+jevTuHDh26o+3Y7XZee+01Ro8ejaurK8nJyYwcOZJhw4YB5hOJiIigXr16TJgwAV9fXz7++GOGDh1Kq1atWLhwYaptjhgxgrfffjvV/O+//x4fn5zVxTbZDv/b68Luyy74uhkMqpxMIRVkT82wExRzmCJXNlPy3O942GPu6GF2XEl29STZ5kHStb/O9z3N+y4eqefd/BgXD5JcPEl23DxItrmDLd21FLONsAsrqHH0K4wbLgewYbCl+FMcz9+Q0MsbKHPmVwJjzcIqdpsrx/I35u9CbYjyUnIuIiKSndQ5OJbQK5s4EVSXjSUHWB1Ohpl50IVVZ1yoWcBO77Jp9JgUyWIxMTE8+uijXLlyhYCAgNuum66k3MvLi927d1OyZEmn+QcPHqRixYrExd1Z993p06czePBgPvjgAypVqsTWrVsZNGgQH330Eb179wZg06ZNPPnkk2zbtg1XV1datmyJi4sLhmHw22+/pdpmWi3lYWFhnD9//h8PRnYUHZ9Ez4kb2XEikmL5vJnZty4F/dO+jj9PSYrDdngFtn0LcNm/EFvUaceia1eRp2LYXLHX7IO92et33cqcmJjI4sWLue+++3B3z+TW6ezo4kFctk3FdvkoRlBx7NV6QP5S15cbBraDf+KyeiwuR1ebs7BhlH8Qe4OBGKE1LApc0iPPn++SZ+hcl7wkMTGR9T//j2Z738TARtLTK6FgOavDyhCxCck0+mAZV+OSmNSnFo1KF7A6JLFYdvh8j4yMJDg4+I6S8nR1Xw8LC2PVqlWpkvJVq1b9Y8X1Gw0ePJihQ4fSvXt3AKpUqcKRI0d47733HEl5rVq12Lp1K1euXCEhIYGCBQtSr149atdOu0qkp6dnmsXn3N3dc+Q/3CB3dyY+XpdO41dz5EIMT0/dwvSnG+DnmQeHeIi+APsXwt758PefZuG0FB5+EHEvFK2N7fe30rym3IaBa8P+uPqn/4M6p55H/1rhctDqHcdd17TWKX+/eTu2HlZ+jG3vfGx7fsFlzy9Q8h5o8pL5V9d45Rh59nyXPEfnuuQV5U/NBsBWpQvuoZX/Ye2c45cdZ7gal0SxfN40LVsYFxd91xCTlZ/vd7PfdGV2ffv2ZdCgQSQmJtKiRQvALP726quv8vLLL9/xdmJiYnBxce7e6+rqit2eOqEKDDQrKO7fv5+NGzfy7rvvpif0HCnYz5PJ1xLznSci6ffdJr7uXQcPt5zfNfofXTgAe+bB3t/g2FrnZNs/FMo9AOXaQMkm4HbtxxifAmZRtxurr2OY1ddzy7Bo2VlYXXhkGpzdbVa93/EDHFpm3kJrQOMXzcIyLmmm9iIiIpIJbCc2USRyG4bNFVuzoVaHk6Gmb7hW4K12mBJyyZHSlZQPHjyYCxcu8Nxzz5GQkACYXdqHDBniuB78TrRr146RI0dSvHhxKlWqxJYtW/joo4+cCsj98MMPFCxYkOLFi7Njxw5eeOEFOnToQKtWrdITeo4VHuzLN33q0P3LtazYf56hs7czpmu13FdZ0p4MxzfC3muJ+Pl9zsuLVDGT8HIPQEj1tFtda/Qwq6zn1nHKc4pCFeDhL8yhVtb8FzZNhpNbYGYvKBABjV6Aqt2u/5giIiIimcZl+fsAGFW6YctF34kOnoti/aGLuNigc+1iVocjki7pSsptNhujRo1i+PDh7N69G29vb8qUKXPLMctvZdy4cQwfPpznnnuOs2fPEhoayjPPPMObb77pWOfUqVO89NJLnDlzhpCQEHr16sXw4cPTE3aOVy0siM971OSpbzfy45YTFAn04tWbhlLLkRKi4eBS2DMf9i2AmPPXl7m4QXiTa4n4/WaCfScKlIaWIzIjWrlbQcXhgVHQdDCs/xLWTYALf5tD1y35P2jQH2r1AU9/qyMVERHJnY6sweXgErPIbZOXyU19LWduPA7APWULEhKoisiSM/2rC5P9/PyoU6dOuh/v7+/PJ598wieffHLLdQYOHMjAgQPTvY/cpnn5Qrz3cBVenb2dz5ceoEigF70ahFsd1t27esZMwPfONxPyG8f29gqEMq3M1vCIluZ9yfl8g81W84bPm63maz6Dq6dg0Ruw/EOo+zTUe8ZcT0RERDLOkpEAHC3QlKJBJSwOJuMkJtuZvdlMyrvVCbM4GpH0S3dSvnHjRmbOnMnRo0cdXdhT/Pjjj/86MLm1rnXCOB0Zx0eL9/HW3L8o5O/F/ZWLWB3W7RkGnNtjJuF75sOJjc7Lg4pDubZmIl6iYeaPvy3W8fSHhgOgbl/YPhNWfWK2nC8fDavHQc1e5vI77RUhIiIit3ZoORxegeHqwb4i7ShqdTwZaMmes5y7Gk+wnwctyhe2OhyRdEtXUj59+nR69epF69atWbRoEa1atWLfvn2cOXOGhx9+OKNjlDQ83yKCU1fimLb+KAOnb2HqU/WoE57f6rCcJSfB0TXmteF758Glw87LQ2tC+TZm1/RCFVWVO69x84SaPaH6o2Yxv5Ufmdecr58AG76CKl3M684LV7Q6UhERkZzJMOBPs5XcXr0nsfbc1Rtt5kazwFunmsXyRgFkybXSlZT/3//9Hx9//DH9+/fH39+fsWPHUrJkSZ555hlCQkIyOkZJg81m4932lTh3NY7fd5/lqckbmfVsA8oUtvi63LhIOPCHmYjvWwhxl68vc/WEUveYSXjZ+yFA54pgVmGv+BBUaGf+mr/yI/OShu3TzVvZB8zh1MLqWh2piIhIznLgD3P0Gjcv7I0GwYotVkeUYU5fiePPPWcB6FJbXdclZ0tXUn7gwAHatm0LgIeHB9HR0dhsNl588UVatGjB22+/naFBStrcXF0Y90hNHv1qLVuOXqb3N+v58blGFAn0ytpArhy/1hr+m5lU2ROvL/PObybg5dtAqebg6Ze1sUnOYbOZP9qUugdObDa7te+aC/t+M28lGpnDqUW0VK8KERGRf2IYZkFVgNpPgn8IkHuS8tmbj2M3oE54PiIK6ful5GzpSsrz5cvH1atXAShatCg7d+6kSpUqXL58mZiYmAwNUG7P28OVr3vXofP41Rw8H02fieuZ+WwDArwy8Zpsw4DT268l4vPh1Dbn5flLX+uW3tZs3dR41HK3itaErt/C+b9h9VjYOg2OrDJvhSubyXnFDuD6r2pVioiI5F77FsKJTeDuA40HWR1NhrLbDUfX9a5qJZdcIF3faJs2bcrixYupUqUKXbp04YUXXuDPP/9k8eLF3HvvvRkdo/yD/L4eTH6iLg9/vpo9p6/yzLebmPREHTzdMjAZTkqAwyuut4hHHr9hoQ3C6plF2sq3heAyGbdfyduCI+ChcdBsGKz9HDZOhDM7YfaT8Mc70GggVO8B7hoCJc+7cAC2TIHLR80igTV6mkMjiojkRYbhqLhO3b7gVwgSE2//mBxk7aELHLkQg5+nG22r6nJIyfnSlZR/9tlnxMWZQ1i9/vrruLu7s3r1ajp16sQbb7yRoQHKnQnL78Okx+vQbcIa1hy8wOAftvNJt+q4uPyLbr6xl2D/YrM1fP/vkHD1+jJ3HyjdwkzEy7QGv4L//kmI3EpAKLT6DzR5GdZ/BevGw+UjMO9lWPo+1O9nds3zDrI6UrHClu/Mce+xAYb5d9VYeOgzqNHD4uBERCyw51ezV6OHHzR8wepoMtzMDWYrebtqofh4qNec5Hx3fRYnJSXx66+/0rp1awBcXFwYOnRohgcmd69y0UDGP1aLJyZtYO62kxQJ9OK1NhXubiMXD13vln5kNRjJ15f5FTavDy/XxrzuV62TktW888E9g6FBfzMRWz0Orhw1W81XfgK1n4D6z4G/hkXJMy4cMBNyw5562dwBULy+WsxFJG+x269fS16/H/gWsDaeDHYlJpH5O08D0F1jk0sucddJuZubG88++yy7d+/OjHjkX2patiCjO1flpZnb+HL5QQoHePFk45K3foDdbg5DtXeemYyf3eW8vFBFszW8XBtzCDMXDTch2YCHD9R7Gmo/Djt/hJUfw7ndZnG4tePNYdYaPq9kLLeLOgeLh5vdNNNkM7u0txyRlVGJiFhr10/m9znPQPNH7FxmztYTJCTZKV/En6rFAq0ORyRDpKu/R926ddm6dSslSpTI6HgkA3SsWYzTkXGMXrCX/8zbReEATx6sGnp9hcRYs0r6nnmwbwFEnbm+zOYKJRqaSXi5+yF/qax/AiJ3ytUdqnUzxzTfv8gcTu3YOtg0ETZPNovBNR4EIdWsjlQyQuRJswfP4ZXm3/N7/+EBhnmNuYhIXmFPNi/rAjMh985nbTwZzDAMpl/rut6tThg2jcYiuUS6kvLnnnuOl156iWPHjlGrVi18fX2dlletWjVDgpP063dPaU5fiePbNUd4acY2CrtGUSdhg9kt/cCfkHhDlXwPfyjT0kzEI1qCT37rAhdJDxcX80ekcvebydrKj80k/a8fzVvpe82K7eGNNZxaTnLpyPWq+4dXwaVDqdfxCYaYC5jXkqchqHimhigikq3smAXn94FXkNl1PZfZeSKS3aci8XBz4eEaRa0ORyTDpCsp7969OwADBw50zLPZbBiGgc1mIzk5+VYPlSxis9l4q4EH1Y4spfj5pdT6YT9OX1oDil3rlv6Amai4eVoWq0iGKtHQvJ3eYRb72jkbDvxh3orVMZPzsg/oUozsxjDg4sFrreCrzB9XrhxzXsfmAkWqmp9ZJRpC8QZmQcrPaqfdhd2wm0MziojkBclJsOxaK3mjgeAVYG08mWDGRrP3U+tKRQjy8bA4GpGMk66k/NChNForxHr2ZDi23mwN3zsf1wt/0wngWu6x11aSkHqdCKj2kPnFVi2GkpsVqQKdvoLmr8Oaz2DzFDi+AaY/CsHlzG7tVbqYXeAl6xkGnNtzvRX8yGqIOu28josbhNaAEo3MRDysLnjddP2gT36zyvrcAThVX08pUvnH29Bzjsa0F5Hcb9s088dNn2Co+4zV0WS42IRkft5yElCBN8l90vUtRdeSZyPxUXBwiVmkbd+Ca904r3Fxh5JNiCnVmifXBLPmvDdld/vxQ9OKBCohl7wif0loOwbuGWIWgdvwlXkt8px+8OdIaDgAavYCD99/3pakn91ujjF/ZDUcuXZN+I2fVwCuHmZvhhINzUQ8rO6dvS41ephV1m8cp7xEY/ihNxxeAb+/Ba1HZs7zEhHJDpISYPloc7rxIPD0szSczPDbzlNcjU8iLL83DUrlroryIulKyr/99tvbLu/Vq1e6gpE7dPX0tWHLfoODSyE5/voyr0Bz3PDybczraL0C8AE+rBRLx89Xse9MFH2nbOTbJ+ri5e5q1TMQyXp+haDlW+aXlY0TYe3nEHkcFgyFZaOh3jNQ92nVVMgoyUlwetu1VvBVcHQNxF1xXsfN20y8SzSC8EZQtDa4e6VvfwVKp66y3mE8zOxp9pQIrQFVOqdv2yIi2d3W78wfJf0KQ+0nrY4mU6QUeOtaKwwXFzUuSe6SrqT8hRdecLqfmJhITEwMHh4e+Pj4KCm/WxcOOLfw1OjpPJSTYZhDW+ydbybiJzY5Pz6oBJRvaxZqK14/ze64RYO8mfR4Xbp+sYb1hy7y0sytfPZITX2oSd7jFWgm5vWeNbv6rRprFhBb+h6s+hRq9TEr1gaqgMxdSUqAk5uvd0c/tg4SopzX8fAzP6NKNDJvoTXALROvCaz4kFlDYOXH5ljmhSpA4UqZtz8RESskxsHyD83pxi+Zw4bmMgfPRbH+0EVcbNC5djGrwxHJcOlKyi9dupRq3v79++nXrx+DBw/+10HlKVu+M78s3ngt5Kqx0G6smWzv/c1Mxi8fcX5c0dpmkbbybaFg+Tu6PrxCSAATetai98T1zN9xmnf8d/FWu4oaTkLyJncvc5zzmr1g189m4nZ6O6z9L6z/Eqp2g0YvQMGyVkeaPSXGwvGN16ujH9sASbHO63gFQvGGZit4iUZmLYusvra7xXA4udW8zGd6D3h6Sa4bIkhE8rjN30LkCQgoav6wnAvN3HgcgHvKFiQk0NviaEQyXoZ9OypTpgzvv/8+jz32GHv27MmozeZuFw6YCblhT71s7vPO9928oFQzMxEvez/4F0nXLhtGBDOma3UGTtvCpNWHCQn04pl7Sv/zA0VyKxdXqNwRKj1sVmhf+Yl5HfLW72DrVPOHr8YvQbFaVkdqrYRos/U7pSjbiY2QnOC8jk/w9evBwxtBoUrWV7l3cYXO38CEe8weET8+DY/MsD4uEZGMkBgLK8aY001eTv8lQNlYYrKdWZvMpLxbHQ1zKblThjZZuLm5cfLkyYzcZO62ZQpmC/ktuHlD5U5mIl66eYYVonqoWihnI+P4z7zdvPfbHgoHeNFBYz1KXmezQURL83ZsA6z6BPb8ev1WsqnZFbpU8zwxcoFbcgy2vxfD8bVmIn5qK9iTnFfyK3K9FbxEIyhYLnseG5/80P07+LqVOX79slHQfJjVUYmI/HsbvjZHrgi8dvljLrRkz1nOR8UT7OfBvRUKWR2OSKZIV1I+d+5cp/uGYXDq1Ck+++wzGjVqlCGB5QmXj+I0dviNbC5mMt7hv5my66ealOLUlTi+XnmIwbO2EeznSeMywZmyL5EcJ6wOdJ8K5/aal5NsnwGHlpu3kGpmcl7hIbMVNreIuXitMvoq3A6vpM3pHdi23/T5FBh2vRW8RCPIXyp7JuFpCalmXhb00zPmOL6h1c3PWBGRnCo+yrz0CuCewZlbo8NCM64VeOtUsxjururlJLlTupLyDh06ON232WwULFiQFi1aMGbMmIyIK28IKs6tW8ptkC9zh557vU0FTkfGMW/7KZ79bhMznqlPpdDAf36gSF5RsBx0+ByaDTOrtW+aBKe2wQ99zIS00QtQ7RFw87Q60rsXdfaGMcJXmcUkr0n5VDLylcQW3sgcXiy80bXPrBysWnezUOb6L81u7E8vdS6qKSKSk2z4H8Sch3wlzf9FudDpK3Es2XsWgK4am1xysXQl5XZ7GtdAy92r0dNshUuTkendkFxcbHzUtRoXouJZe/AifSZu4Md+DQnLn/uqdor8K0FhcP970OQVM6FbPwEuHoRfXoAl70GD56DW4+AVYHWkt3blxPUxwg+vggv7U68TXA7CG5FUrB5/7I+lRYfHcHdPPZpDjtZqJJzaDsfWmoXfnvo9V47nKyK5XFzk9e+QzYamOfJObjB783HsBtQJz0fpgvqsltwri8vgipMCpeGhz2DuAJyqr2OY87OgBcfTzZUJPWvT9Ys17D1zld4T1zP72Ybk882dXaBE/hXfAua1yA2fN6vdrvnMrHi7+E1YPgbqPgX1+oFfQWvjNAxzxIaUomxHVsKlwzetZDOHB0vpjl68oSNuIzGRuCPzszzsLOHmAV0nm4Xfzu02P387T8w53fBFRADWfQGxl6BAGajSxepoMoXdbji6rqvAm+R26UrKO3XqRN26dRkyZIjT/NGjR7NhwwZ++OGHDAkuT6jRwxy393bjlGeyQG93Jj1Rh46fr+bguWie+nYjU5+qh5d7LrpeViQjefqZreN1noIdP5hF4c7vMyvgrvmv+R5uOADyhWdNPIZhjuaQ0gp+ZDVEHndex+ZiXledUpSteH2zAFpe5F8Eun4Lk9rCXz9BaE1oNNDqqERE7kzsZVj9mTndbGjuqm9yg7WHLnD0Ygx+nm60qZK+UYdEcop0JeXLly9nxIgRqeY/8MADuqY8PQqUhpYjLA0hJNCbyU/UpfP41Ww6comB07Yw/rFauLqo9Ujkltw8zB/Wqj0Ce+eZBXdObDKv89v4jTl6QuNBZot0RrLb4dye62OEH1kNUWec13FxM5PNEg0hvDGE1cve3euzWvF68MD7MO9l+P0tCKlqDjspIpLdrfkvxF+BghWgUkero8k0Ka3kD1UPxcdDnXsld0vXGR4VFYWHR+ruze7u7kRGRv7roMQaZQv781XvOjz29ToW7TrDW3N38m77ytjUrVPk9lxcoEI7KP+gOcb5yo/hwJ+wY6Z5K9ParNheosH1x1w4cOc9ZOzJcGbn9aJsR1ZD7EXndVw9oVjtay3hDSGsboYNo5hr1X4STmw2x6P/4XF4ZlnOL2YnIrlbzEVYO96cbj7M/P+TC12JSeS3nacB6FZbBd4k90tXUl6lShVmzJjBm2++6TR/+vTpVKxYMUMCE2vULZmfT7pVp//3m/lu7VFCAr3p3zzC6rBEcgabzRzPvGRTOLnV7Nb+1xzYv9C8hdWHJi+Zlc9/GYhTLYlVY81aEjV6QHKiWYwspTv60bVmq8iN3LzNxDu8sZmIF60F7l5Z/YxzNpsN2o4xf/A4tQ1m9IQnFuo4ikj2tWosJFyFIlWgfDuro8k0c7aeICHJTvki/lQtppGBJPdLV1I+fPhwOnbsyIEDB2jRogUAf/zxB9OmTdP15LlAmyohvPVgRUb8sosPFu6lkL8nXfQrpcjdCa0OXSZBiwOw+lPY+r1Z8fv7rrd+zM/9Ycu3cGoHJEY7L/PwN68DT+mOHlI9145Jm6XcvaHbd2bht1Nbze7s7T9T4TcRyX6izpkjgAA0fz3XtpIbhsH0a13Xu9cJU49NyRPSlZS3a9eOOXPm8H//93/MmjULb29vqlatyu+//84999yT0TGKBfo0KsmpyDgmLDvI0B93UNDfk2blClkdlkjOU6A0tBtrjnW+5r9mt0N74i1WNsxWcQCvIDMBT+mOXqQquOqaukwRVBw6fwPfdYSt30HRmlDnSaujEhFxtuoTSIwx64WUvd/qaDLNzhOR7D4ViYebCx1qFLU6HJEske5veG3btqVt27YZGYtkM0Nal+fMlTjmbD3Jc1M3M+PpBlRRFyKR9PEvAq3ehUuHYPevmN3W0xBSDdp/DoUq5tpWkGypdHO49y2z6NtvQ8yuoWF1rY5KRMQUeQo2fGVON389V/fmmb7hKAD3VypCkI96hEnekK5vfBs2bGDdunWp5q9bt46NGzf+66Ake3BxsTG6czUaRwQTk5DM45PWc/RCjNVhieRsBSLM4cnSYnOF0i2gSGUl5FZo9AJUbG/2ZJjRE66e+efHiIhkhZUfQ1KcOZJGxL1WR5NpYhOSmbv1JADd6ujSSck70vWtr3///hw7dizV/BMnTtC/f/9/HZRkHx5uLox/rCYVQwI4H5VA74nruRAVb3VYIjlXjZ7cspUc49pysYTNBu3/CwXLQ9Rp+KG3WXRPRMRKV47DponmdC5vJZ+/4xRX45MIy+9Ng1IFrA5HJMukKynftWsXNWvWTDW/Ro0a7Nq1618HJdmLv5c7kx6vQ9Egbw6dj+aJyRuJSUiyOiyRnKlAabPKus3FbBm/8e9Dn916WDTJGp7+0G0qeAbA0TWw8HWrIxKRvG75h5CcACUam6N75GIpY5N3qx2Gi0vu/fFB5GbpSso9PT05cyZ1t75Tp07h5qZCRLlRoQAvJj9RlyAfd7Ydu8yA77eQlGy3OiyRnKlGDxiwERoNhEoPm38HbDTni/WCI+DhCeb0+gmwbbq18YhI3nXpMGyZYk63yN2t5AfPRbH+8EVcbNC5lrquS96SrqS8VatWDBs2jCtXro+be/nyZV577TXuu+++DAtOspeIQn583bs2nm4u/LnnLG/M2Ylh3KobrojcVoHS0HKEWfW75Qi1kGc35dtA01fN6V9eMMcxFxHJass/AHsSlGpujsSRi83YaLaSNytXiCKBXhZHI5K10pWUf/jhhxw7dowSJUrQvHlzmjdvTsmSJTl9+jRjxozJ6BglG6lVIj+fPlIDFxtM33CMsX/stzokEZHM0WwYlGllFlea8RjEXLQ6IhHJSy4cgK3TzOnmuftSmsRkO7M3nQCga221kkvek66kvGjRomzfvp3Ro0dTsWJFatWqxdixY9mxYwdhYXoj5XatKxXhnfaVAfjk9/1MX3/U4ohERDKBiwt0/BLyhcPlozD7SbAnWx2ViOQVy0aBkWz+OBhWx+poMtWfe85yPiqeYD8P7q1QyOpwRLJcusfc8fX1pXHjxrRr146mTZsSFBTEb7/9xty5czMyPsmmHqtfggHNIwB4fc5O/titoYNEJBfyzmcWfnP3gQN/wp//sToiEckLzu2FHT+Y081fszaWLJBS4K1TzWK4u2pIUMl70lWV7eDBgzz88MPs2LEDm82GYRjYbig8kZysloS84OVWZTkdGcesTcfp//1mpvWtT43i+awOS0QkYxWpDA+NM1vKV34EoTWg4kNWRyUiudnS98GwQ/kHzc+cXOz0lTiW7j0LQFeNTS55VLp+inrhhRcoWbIkZ8+excfHh507d7Js2TJq167N0qVLMzhEya5sNhvvdazCPWULEpdo58nJGzl4LsrqsEREMl6VzlC/vzk9px+c22dtPCKSe535C/760ZxuNszaWLLArE3HsBtQNzw/pQv6WR2OiCXSlZSvWbOGd955h+DgYFxcXHB1daVx48a89957DBw4MKNjlGzM3dWFz3vUpErRQC5GJ9B74nrOXY23OiwRkYx33zsQ3gQSomD6oxAXaXVEIpIbLfk/82/FDmZPnVzMbjeYufE4oFZyydvSlZQnJyfj7+8PQHBwMCdPngSgRIkS7N27N+OikxzB19ONb/rUoXh+H45djOXxSeuJik+yOiwRkYzl6gadJ4J/KFzYb7aY2+1WRyUiucnJrbDnV8CWJ1rJ1x68wNGLMfh7utGmShGrwxGxTLqS8sqVK7Ntmzlma7169Rg9ejSrVq3inXfeoVSpUhkaoOQMBf09mfxEXfL7erDzRCTPTd1MYrK+rIpILuNXELp9B64e5hfnVR9bHZGI5CZL3zP/VukMhcpbG0sWSBmbvF31UHw80lXqSiRXSFdS/sYbb2C/1jrwzjvvcOjQIZo0acL8+fP59NNPMzRAyTlKBvvyTZ86eLu7snzfOYbO3oFhGFaHJSKSsYrVgjYfmtN/vAt//25tPCKSOxzfCPsWgM0F7hlqdTSZ7nJMAr/tPA1Ad3VdlzwuXUl569at6dixIwARERHs2bOH8+fPc/bsWVq0aJGhAUrOUj0siP/2qIGri43Zm48zZpGKIYlILlSrN9TsDRgw60m4dNjqiEQkp0u5lrzaIxAcYW0sWWDOlhMkJNkpX8SfKkUDrQ5HxFIZNhBg/vz5nYZFk7yrRfnC/N/DZmGSz5b8zZS1RyyOSEQkE7T5AIrWgrjLMP0xSIixOiIRyamOroUDf4CLGzQdbHU0mc4wDKZfG5u8e50w5RCS52VYUi5yo251ivNiy7IAvPXzThb+ddriiEQkNzt0PppRC/bw/LQtjFqwh0PnozN/p26e0HUK+ATDmR3wywugS3ZEJD3+/I/5t3oPyF/S2liywI4TV9hz+ioebi50qFHU6nBELKekXDLNwHsjeKRuGHYDBk7bwsbDF60OSURyoZkbj3HvmKV8ufwg87af5MvlB7l3zFJ+uFZAKFMFFoWuk8HmCjtmwvovM3+fIpK7HFoOh1eYBSTzQCs5wIxrreT3VypCkI+HxdGIWE9JuWQam83Gu+0rc2/5QsQn2Xly8kb+PnvV6rBEJBc5dD6aobO3Yzcg2W44/R0yezuHs6LFPLwxtLrWyrXwNTiyOvP3KSK5g2Fcv5a8Zm8Iyv0Fz2ISkpi71RxOWQXeRExKyiVTubm6MO7RGlQPC+JKbCK9v9nAmcg4q8MSkVwgKdnOhGUHbrncZrM5htvJdPX7QeXOYE+Cmb0h8mTW7FdEcrYDf8LRNeDqCU1esjqaLDF/x2muxicRlt+b+qUKWB2OSLagAQEl0/l4uPF179p0/mINh85H02fiBmY+Ux9/L3erQxORHOJKbCK7T0XecLvKvjNXiU+y3/IxhmFw/FJs1gRos8FDn8K5PXBmJ8zsBX3mmdedi4ikxTBgyUhzus6TEBBqbTxZZOa1ruvdaofh4qICbyKgpFyySAE/TyY/XpeO41ez+1Qkz363iYl96uLhps4aInKd3W5w5GJMqgT8xOW0k2s3FxtJ9rSLq9kNKOCbhdcqevhCtynwZTM4vgEWDIUHP866/YtIzrJ/EZzYBG7e0PhFq6PJEgfORbH+8EVcbNC5lrqui6RQUi5ZpngBHyY9XoduE9aw6u8LvDprGx91ra5fSUXyqKj4JPaejmTXqauOBHzv6avEJCSnuX7RIG8qhPhTISTAcbPbDe77eBm3yMuZv/0kHWsWpWqxoMx7IjfKXwo6fQ1Tu8DGbyC0JtTsmTX7FpGc48ZW8rp9wa+QtfFkkZnXLilqVq4QRQK9LI5GJPtQUi5ZqnLRQMY/VosnJm1gztaTFA70YtgDFawOS0QyUUo38pRW792nItl9OpIjF9Ie19vDzYVyhf2dE/AiAQT6pH3Jy6hOVRkyezs2mw3DMBx/8/t6cDYqgc5frGFkh8p0qZ1FrTJl7oPmr5lfuOe9DIUrQdGaWbNvEckZ9vwKp7aBhx80GmR1NFkiMdnO7E3HAeimAm8iTpSUS5ZrWrYgozpV5eUftjFh2UGKBHjxeKPcPyanSF4Ql5jM3tNXnbqe7z4dydW4pDTXL+TveUPLtz8VQwIoGeyLm+udX9rSpXYYdcLzM2PjMY5fiqVYPm+61Q4jv58HL83Yyu+7zzJ41na2H7/C8AcrZs1lM01egZNbYO98mNETnlkGvsGZv18Ryf7sdljynjld71nwzRvFzv7YfZbzUQkE+3nSonze6BkgcqeUlIslOtUqxunIOD5YuJd3ft1FIX8v2lYNsTosEblDhmFwJjKe3aci2XXD9d+Hzken2ZXc3dVG6YJ+VLyh63mFEH8K+GVMIbTwYF+G3F8+1fwve9bm0z/388nv+5my9gi7T0Xy+WM1KeSfyd0mXVzg4S/gfy3gwt8w63F47Cdw1b9dkTxv1xw4+xd4BkDDAVZHk2VSuq53qlUU97v44VUkL9C3A7HMc81Kc/pKHFPWHuHFGVsp4OehoTFEsqGEJDt/n4263vp92mwBvxidkOb6+X09zK7nRa4n4BGF/Cwp7OjiYmNQy7JUDg3kxRlb2XjkEu3GrWT8Y7WoWTxf5u7cKxC6TTUT80PL4Y8R18czF5G8yZ4MS983pxv0B+9M/hzKJk5fiWPp3rMAdM2qS4lEchAl5WIZm83GiIcqcSYyjkW7ztD3243MerYh5Yr4Wx2aSJ51PiqeHccu8edJG0tm7WDPmSgOnIsiMTl187eLDUoV9HO0elcICaBiSACF/D2x2bJXAceWFQszZ0Ajnpmyib/PRtFtwhrefqgyj9Yrnrk7LlQeOnwOP/SG1ePMwm+VO2buPkUk+9oxC87vBa8gqN/P6miyzKxNx7AbUDc8P6UL+lkdjki2o6RcLOXqYuPTR2rw2Ffr2HjkEn0mrufH5xoSEuhtdWgiuVpSsp1D56PZ5eh+bl4Hfu5q/LU1XOHIKcf6/l5ujqQ7JQEvW9gfL3dXa55AOpQu6Mec/o14ZeY2Fvx1mtd+2sGOE5cZ8VAlPN0y8XlU6gAnX4BVY+HnAVCwPBSumHn7E5HsKTkJll1rJW800OxNkwfY7QYzrnVdV4E3kbQpKRfLebm78lXv2nQav5oD56Lp880GZj7bgEDvtCsti8jduRKTeK3L+fXia3vPXCUhyZ7m+iXy+xBEFM2ql6FysXxUCPGnaJB3tmv9Tg8/TzfGP1aTz5ce4MNFe5m2/hi7T13li8dqZe7wPC3eNCstH1wKM3pA3yXgHZR5+xOR7Gf7dLh4EHwKQN1nrI4my6w9eIFjF2Px93SjTRXVDxJJi5JyyRaCfDyY/ERdOn6+mr1nrvL0txv59sm6mdt6JZLL2O0GRy7G3JB8mwn4icuxaa7v4+FK+SLO436XL+KPh4vB/PnzadO8NO7uue/HMZvNRv/mEVQKDWDgtC1sPXaZB8etZPxjNakTnj9zdurqBp2+gS/vMb+U//QMdJ9mFoQTkdwvKQGWjTKnGw0Cz7zThXv6BrOV/KHqoXh76HudSFqUlEu2USyfD5Mer0vXCWtYd+giL83cxrjuNXBxyfmtcyIZLSo+ib2nI9l16vrwY3tPXyUmITnN9YsGeV/rfn49CS+e3yfN91diYmJmh58tNCtXiF+eb8wzUzax5/RVHvlyLW+2q0jP+iUyp1eAbwHoNgW+bg37FsDy0dBsaMbvR0Syn61T4fJR8C0EdZ6yOposczkmgQV/nQbUdV3kdpSUS7ZSMTSACT1r0WfieuZtP0Uhf0/efLBirug2K3KjQ+ejmXnDuNpda4dRMtg31XqGYXD8Uuz1Mb+vVT8/ciEmze16urlQrkhK5XMzAS8fEqDLQW6hRAFffnyuIa/O2s6v20/x5s9/se3YFUY+XDlzrpcPrQHtPoE5/WDpexBSHcrdn/H7EZHsIykeln9oTjd5CTx8rI0nC83ZcoKEJDsVQgKoUjRvXEMvkh5KyiXbaRQRzIddqvHC9K1MXHWY0EBv+jYtZXVYIhlm5sZjDJ29HZvNhmEY2Gw2Jiw7wH86VKZSaKBT1/PdpyO5GpeU5nYKB3g6dT2vGOJPeAFf3DT+613x8XBj3CM1qFoskPd/28PszcfZd+YqX/SsRdGgTCg6Wf1ROLEJNnwFPz4NTy+BAqUzfj8ikj1smgyRx8E/FGo9bnU0WcYwDEfX9e51wtTAInIbSsolW2pfvShnIuP4v/l7GDl/N4UCPGlfvajVYYn8a4fORzN09nbsBmBcG2bs2t/XftqZ5mPcXW1EFPKnQoj/tern5i2/r0cWRZ372Ww2nm5amoohgTw/bTM7Tlyh3biVfPZoDRqWDs74HbZ+D07vgGPrYMZj8OTiPHWNqUiekRgLK8aY001fBvdMLCiZzew4cYU9p6/i4eZCB32HE7ktJeWSbfVtUorTV+L5ZtUhXvlhGwX9PGkYkQlfjkUymd1ucPB8NJuPXGLiqkNmQn4LXu4u1C6R39H1vEJIAKUL+uHhptbvrNC4TDBzB5jXme86FUnPr9cz7IHyPNm4ZMa28rh5QJfJZuG3s7tg7vPQ+RtQS5JI7rLxG4g6DYFhUKOX1dFkqZRW8gcqFyHQR5dQidyOknLJtmw2G2+0rcCZq3HM236KZ6ZsYsYzDagYGmB1aCK3FRWfxLZjl9l85BKbj15i89HLXIn95+JpLja4r0Jhxj1aMwuilFsJy+/D7H4Nee2nHfy05QT/mbebHSeu8H7HqhlbOTggxEzMJz8If/0IRWtBwwEZt30RsVZCNKz82JxuOtj8MS6PiElIYu7WkwB0q60CbyL/xNKml+TkZIYPH07JkiXx9vamdOnSvPvuuxjG9WakqKgoBgwYQLFixfD29qZixYp88cUXFkYtWcnFxcaYLtWoVzI/V+OT6DNxPccvpV3gSsQKhmFw5EI0P24+zhtzdvDA2BVUHbGQHl+tY8zifSzZe44rsYl4urlQt2R+aoQFcasBBWw2G8Xy550CQNmZt4crH3WtxlvtKuLqYuPnrSfpNH41xy5m8OdPiQZw//vm9OI34dDyjN2+iFhn/ZcQfQ7yhZu1JPKQ+TtOExWfRPH8PtQvVcDqcESyPUtbykeNGsX48eOZPHkylSpVYuPGjTz++OMEBgYycOBAAF566SX+/PNPvvvuO8LDw1m0aBHPPfccoaGhPPTQQ1aGL1nEy92VL3vVpssXq9l3Joo+Ezcw69kGBPnknV+cJfuITUhm+/HLbD562WwFP3KJC9EJqdYrGuRNzRL5qFk8iFol8lEhJAB3VxcOnY/m3jFL09y2YRhqUchGbDYbjzcqSYWQAPpP3cyuU5G0+2wl4x6pQZMyBTNuR3WeMgu/bZsGP/SBZ5ZDYLGM276IZL24SFg11py+Zyi45q3u2zM2HAWga+1iGtpW5A5YmpSvXr2a9u3b07ZtWwDCw8OZNm0a69evd1qnd+/eNGvWDICnn36aCRMmsH79eiXleUigtzuTn6hLx89X8/fZKJ6avJHvnqqXOUMWiVxjGAYnr8Sx6cglR1f0XScjSbrponAPVxcqFQ2gVvF81xLxfBQJTLuYT8lgX0Z1qsqQm6qvG4bBqE5VCU9jWDSxVv1SBfjl+cY8+90mth+/Qu9v1vPq/eV5pmmpjLnO3GaDBz+GM3/B6e1m4bfHF+SpglAiuc66CRB7CQpEQJUuVkeTpQ6ci2LD4Uu42KBzLf3QLHInLE3KGzZsyJdffsm+ffsoW7Ys27ZtY+XKlXz00UdO68ydO5cnnniC0NBQli5dyr59+/j444/T3GZ8fDzx8fGO+5GRkQAkJiaSmPjP13RK9hXs48ZXPWvQ/asNbDxyiee/38y47tVwzYJfYFPOHZ1DuVt8kp1dpyLZcvQyW45dYcvRy5y5Gp9qvUL+ntQIC6RG8SBqhgVRMcQfz5t+ILrdudKhWhFqFAvgh00nOH45lmJB3nSpVZQSBXyyxTmm8z21gr5ufP9Ebd76dTezN5/k/d/2sO3oJd57uBK+nhnxr9QNOk3C7Zt7sZ3cgv3Xl0hu+4kKv2UyneuSKeKu4LZmHDYgqclgDLsBduvPsaw636etOwLAPWWDKeDjqveXWCI7fL7fzb5txo0XcGcxu93Oa6+9xujRo3F1dSU5OZmRI0cybNgwxzrx8fE8/fTTfPvtt7i5ueHi4sL//vc/evVKu4LliBEjePvtt1PN//777/Hx0bWaucHfV+Dz3a4kGzYaF7bTuaRd31slXa4kwKGrNg5ftXHoqo1j0ZBsOJ9MLhgU9YWS/gbh/gYl/Q3yeShXyqsMA1adsfHjYReSDRsh3gZPlkumYAYNZ14wcicNDnyADYOtYY9zJLh5xmxYRLJMuVM/Uv70HCK9irKk/Eiw5Z3RM5Lt8OZmV6ISbTxZLpmq+S1LM0QsFxMTw6OPPsqVK1cICLh9oWpLk/Lp06czePBgPvjgAypVqsTWrVsZNGgQH330Eb179wbgww8/5H//+x8ffvghJUqUYPny5QwbNoyffvqJli1bptpmWi3lYWFhnD9//h8PhuQcv+08zQszt2MY8Mp9ZXimaclM3V9iYiKLFy/mvvvuw909b10XllskJtvZezqKzccuX2sJv8yJy3Gp1svn407N4kHUCAuielggVYoG4OORtwaq0Pn+zzYducTz07dxLiqBAC83xnSpQrOyGXOducvqT3Fd8g6GizvJvX7BKFo7Q7Yrqf1/e/cdH1WV/nH8c2fSSUICCQRIQkAg1FASQEQpgiAqRVEQWVfRFRFsP8tiQ9FVUWwoCrZdXRvFQkeFlV4EAgQIJfTeS0gggZQ5vz8GAoGAlCQ35ft+veLczD0z8yQekjzz3PMczXXJd2mH8fikCVbGMbK6f4Wp3dnuiHIUxnyftmYfA0atIMTfiznPtMLTWXrekJCipSj8fE9JSSEkJOSSknJb/9J89tlnee6557j77rsBaNCgAdu2bWPIkCHcd999pKen88ILLzBu3LicdecxMTEkJCTw7rvv5pmUe3t74+3tfd79np6e+oVbgnRpHMGhtCxenbSGd6dvoFKQH91jC74xkuZR8XHo2MlczdhW7EzmRKYr1xiHBbUqBhB7ah14bNVgqpb3y9/9qIsxzfcLu7ZGBSY/fgOPfLeUZduT6fvdcp5qX4sBbWtcfVOjVk/B3gSstRPx+LmPu/Gbf4X8CVzypLku+WbJSMg4BhUb4FGvGziKXlJakPP9p2XubdC6x4bj53P+3+Mihc3On++X87q2JuVpaWk4zvlh5XQ6cbncfzifXgd+sTFSevVpWY29R0/w2ZzNDPx5JaEB3rTKp0qVFC/ZLsP6fanuhmynkvCth87fuirQxyOnEVuTyGAaRpQlwEd/iMuVqRjow6i+1/LqpDX8sGg7701fz6pdR3mvR8Orm1eWBd1GwIEkOJjk7sj+9wmlrnuzSLFz7IC7wRtA2xeKZEJekPYcTWf2+gOA9iYXuVy2JuWdO3fmjTfeIDIyknr16rF8+XLef/99HnjgAQACAwNp3bo1zz77LL6+vlStWpXZs2fzzTff5GoGJ6XXwJtrszflBBMSdvPId0sZ83AL6lcpa3dYUsCOpmWyfMfpjujJJOxI5tjJrPPG1ajgf6ojuntbsuoh/tqaRfKVt4eTN29vQEyVsrw8YTXT1uyj2yfz+fzvcVwT6n8VTxwAd38Pn7eFbfNh2iDo9Fb+BS4i+W/+MMhMg8qNIbqT3dEUup/id+Iy0CyqHNWv5uefSClka1I+fPhwBg0aRP/+/dm/fz+VK1fm4Ycf5uWXX84ZM3r0aJ5//nl69+7N4cOHqVq1Km+88Qb9+vWzMXIpKhwOi3fubMjBYyeZv/EQ93+1hF8euY7I8mrqV1K4XIbNB4+d2pbMfTn6hv3HzhtXxstJo8ggYiODaVw1mCYRwZT1U2VRCsfdzSKJDgvgke+WsenAcbp+PJ/3ezSkQ72wK3/SkJpw+6cwpjcsGglVmkBMj/wLWkTyT+peWPKl+7jti6WuG6jLZRi7dAcAPZuqSi5yuWxNygMCAhg2bBjDhg274JiwsDC++uqrwgtKih0vDwef/i2WHp/9ydo9Kdz31WI+6NGQ39fsY+eRdMKDfekRF0E17f9cLBw7mcWKHcm5LkVPOXF+FTyqvF/OpeixVYOpVTGgULbHE7mQxpHBTHrsegZ8v4zFWw/T99ulPH5jDZ5sX+vKr9Cocxvc8AzMfRcmPg6htaFSTP4GLiJXb+77kHUCwptBjfN7HpV0CzcfYsfhdAK8PbilQSW7wxEpdkpXS2EpsQJ8PPm6T1PuGLGALQeP023EApyWhcFgWRafzd7E291juEtrnIoUYwzbDqWxbPuRU0l4Mkl7U3CdsyeEj6eDmPCgnIZsTSKDKO+vBjJS9IQGePP9Q815Y8pavl6wlY9mbCRxdwof9GxEWd8rvHKj7QuwJwE2/g/G/A36zgK/cvkZtohcjaO7YOmpAtKNpa9KDjB6ibtK3qVRZXy9nDZHI1L8KCmXEqNioA9v3F6f+79aAkD26d3+Tt0O/HklTaPKEaWKuW3SM7JZuTOZpdvdl6Iv336EQ8czzhtXJcj3VAIeRJOqwdSpFKhtVaTY8HQ6GNylHvWrlOWFcauYsW4/3T6Zz2f3xlKrYsDlP6HDCXd8AV+0hSNb4ed/QO8f3feLiP3mvgvZGVC1JVRrbXc0he7I8Qx+T9wLwN1NI22ORqR4UlIuJcqiLYdxWJxXaQV3bt7323hiq5bDz8uJr6cT31O3fl7uY5/Tx7nOeeBhuchyuSu7cmmMMexKTmfptiMsP7U12ZrdKWSd8z/Hy+mgfpXAM1XwqsFUDPSxKWqR/HNnbDjRFQPo991S9xU8n8zn3bsaXtmlnX7loOd38OVNsOkPmPkmtBuU/0GLyOU5sg2Wfes+LoVryQHGJ+wiI9tFnUqB1K9y8b2YRSRvSsqlRNl5JP2C5wywft8x1u87v0nYpfHgn0v+d14yn1ci7+t1TsLv6cTXyyPXY3y98nicp7NIdgffcvA4Y+N3XHSN/smsbBJ3pZzqiO6+HH1/6snznqtioHdOAt44Mpj6VQLx9lDFT0qmBuFlmfhoSx79YTkLNx+i//fLeKTNNTzTIfryeyCENYAuH8EvD7krc5Ubu9eci4h95gwFVyZUbwNRLe2OptAZYxhz6tL1u5tGYJXCNyVE8oOScilRwoN93b8Q8qhoWxa0qFaea68pT1pGNicys0nLyCI900V6RhbpmdmkZ2SfdS47577T1d1sl+HYyaw8t9/KL94ejpxk3cfr3KTegZ+XxwXfCLjYmwR+nh74eDnwcjou65fm2PgdPPfzSizLwpgza/RfvLUOlcv65jRkS9yVQka2K9djPRwWdSsH5lTAY6sGU7msj35pS6lS3t+bbx9sxtu/reOLuVsYOWsTibuOMrxXY4L8vC7vyWJ6wK5l7m7s4/pB6Ex3l3YRKXyHNkHCKPdx2xftjcUmK3ceZd3eVLw8HHRrVMXucESKLSXlUqL0iIvgs9mb8jxnAW/e0eCK1pSnnTjJhCm/cUObG8k0DtIzsknPzCI9w0X6qeT+3EQ+PSObtMxsTmScdf/pc2fduh97Jpk9meXiZJaLI2Re6bfhopwOK89qf86xlxO/U+czslyMWbIDA2fe6Dh1+6/Ja8977vJlvGh8qht6k8ggYsKD1PBFBPBwOnjx1rrUr1KWgT+vZO6Gg3T+eB6f/S2OupUv83LPDv+CvSvd+5eP7g0P/eHe11xECtfsoWCyocZNENHM7mhscbrBW6f6YdqGVOQqKCmXEqVaSBne7h7DwHMqu8YY3u4ec8VN3jydDvw83M3kPD3z/5eOy2U4kZW7Up9+KUn+6Qr/WdX+tIxzEv9Tj8sugGp/+TJedGoQlrMtWWQ5P1XBRS6ia6Mq1KwQwMPfxbPjcDp3jJzP291j6Ho5FSanJ9z1NXzWCg4mwfhHoMe3pXItq4htDqyHVWPdx21fsDcWm6RlZDFpxW5Ae5OLXC0l5VLi3BUXQdOocow5aw10z7iIIt113eGw8PPywM/Lg/IF9BoZWe6q/olcibu72p921uX7pxP7E5nZTFm5h80Hj+cdswXX1Qjh9W4NCihikZKpbuVAJj16PY+NWs7cDQd5YnQCq3Ye5blOtfG41F0G/Cu4E/GvOsHaSTDvA7jhqYINXETOmP0WGBdE3wpVmtgdjS2mrNzDsZNZRJbz49pqBfXXi0jpoKRcSqSokDIMvLm23WEUKV4eDrw8HJe1V3KWy/D5nM05VfazWZZFeLBvfoYoUmoE+XnxdZ9mvDstiZGzNvHlvC2s2ZPC8F6NKe/vfWlPEtEUbnkHJj8JM/4FlRpCjXYFGreIAPvWQOIv7uO2z9sbi43GxrsvXe/ZNKJINqkVKU608a+IXFCPuIgLbgNnjKFnnC5XE7lSTofFwJtrM6J3E/y8nCzYdIguH88ncdfRS3+S2Puh8b3uit3PD7q3ZxKRgjXrTcBA3a7uXRFKoY37j7Fk6xEcFnRvEm53OCLFnpJyEbmg02v0HZY7gTj79mrW6IvIGbc0qMS4/i2JKu/HruR0uo9cwM9Ld17agy0LbnkXKjeB9CMw5m+QeeGtIUXkKu1Z4V4yggVtSm+V/MdTVfK20RUIK+tjczQixZ+SchG5qLviIpjxdBv6tqrOrTGV6duqOjOebsNdqpKL5JvosAAmPHo9baNDOZnl4ukfVzB44moyz9lmME+ePtDzW/ALcXdln/RknttCikg+mDnEfdvgTqhQx95YbJKR5eLnZe43DtXgTSR/KCkXkb90eo3+8F6NGXhzbVXIRQpAWV9P/n1fUx5v5953/OsFW+n9xSIOpJ68hAeHw11fgeWElaNh8RcFHK1IKbRzKaz/FSwHtB5odzS2mbFuHwePZRDi703b2hXsDkekRFBSLiIiUkQ4HBZP3VSLz++Nxd/bg8VbD9N5+DwSdiT/9YOrtYKbXnMf//48bFtYoLGKlDoz33DfxtwNITXtjcVGY07tTX5nbDiel7pjhIhclP4liYiIFDEd6oUxfkBLqoeWYW/KCXp8upAxS7b/9QNbDIB6d4ArC368D1L2FHywIqXB9j9h0x/uq1Fa/9PuaGyz52g6s9cfAKBHnBq8ieQXJeUiIiJFUI0K/kwY0JIOdSuSke1i4M+reGHcKk5mZV/4QZYFXT+GCnXh2D53Yp6VUXhBi5RUp6vkjXtDuWr2xmKjn+J34jLQrFo5qof62x2OSImhpFxERKSICvDx5NO/xfL0TbWwLPhh0XZ6ff4n+1JOXPhBXmWg53fgXRZ2LHJfyi4iV27LXNgyBxye0OpZu6OxjctlGHOq6/rdavAmkq+UlIuIiBRhDofFY+1q8p/7mhLg48Gy7cncNnwe8VsPX/hB5a+B7l8AFiz5EpZ/X2jxipQoxsDMN93HsfdBUKS98dhowaZD7DySToC3B53qV7I7HJESRUm5iIhIMdC2dgUmPno9tSr6cyD1JL2++JNv/9yGudD2Z7U6ntlHefL/we7lhResSEmxeSZsXwBOb7jhabujsdXpKnnXxpXx9XLaHI1IyaKkXEREpJioFlKGcf1bckuDMDKzDYPGJzLw55WcyLzAOvNWz0KtmyH7JIy5F44fKtyARYozY2DGqbXkcQ9AYGV747HRkeMZ/J64F4CecaX3agGRgqKkXEREpBgp4+3BJ/c04blOtXFYMDZ+Jz0/W8ju5PTzBzsccPtnUO4aOLoDfuoD2VmFH7RIcbRhGuyKBw9fuP7/7I7GVuMTdpGR7aJupUDqVwm0OxyREkdJuYiISDFjWRb9Wl/D132aUdbXkxU7j9J5+Dz+3JxHJdw3yN34zbMMbJkNM14r9HhFih1jznRcb/YQBFS0Nx4bGWNy9ibv2TQCy7Jsjkik5FFSLiIiUky1qhXKpEevp06lQA4dz6D3l4v4av6W89eZV6zr3ioNYP6HsHpc4QcrUpysmwJ7VrjfzGr5hN3R2GrlzqOs25uKl4eDbo2q2B2OSImkpFxERKQYiyzvxy+PXEfXRpXJdhlenbSGp8euOH+def074LrH3MfjB8D+tYUfrEhx4HKd6bh+bT8oE2JvPDYbfapKfkv9MMr6edocjUjJpKRcRESkmPP1cjKsZyNeurUOTofFL8t30X3kAnYcTss9sN1gqNYKMo/D6N5w4qgt8YoUaWsnwP7V4B0ILR61OxpbpWVkMWnFbgB6aG9ykQKjpFxERKQEsCyLf9xQnW8fbEa5Ml6s3p1Cl4/nMX/jwTODnB5w51cQGA6HN8G4fu6qoIi4ubJh5hD38bX9wa+cvfHYbMrKPRw7mUXV8n5cW6283eGIlFhKykVEREqQ664JYdJj19OgSlmOpGVy778X8fmcTWfWmZcJgZ7fuvddTpoKc9+1N2CRoiTxZziYBD5B0KK/3dHY7nSDtx5xETgcavAmUlCUlIuIiJQwVYJ8+bFfC7o3Ccdl4M2p63hs1HLSMk5th1alCdz2vvt45puwfpp9wYoUFdlZMOst9/F1j4FPWXvjsdnG/ceI33YEhwV3xobbHY5IiaakXEREpATy8XTy7l0xvNa1Hh4Oi8kr93DHiAVsO3TcPaDx3yDuAcDAL/+AQ5tsjVfEdivHuJd1+JWH5g/bHY3txsa7q+RtoytQMdDH5mhESjYl5SIiIiWUZVn8vUUUPzx0LSH+Xqzbm0rn4fOYlbTfPeDmtyG8qbvh25h7IeO4vQGL2CU7E2a/7T5u+QR4B9gbj80yslz8vHQn4N6bXEQKlpJyERGREq5ZtXJMfuwGGkUEkXIiiz5fL+GTmRsxTk/o8Q2UqeDuNj3xcTh3j3OR0mD5d5C8zf1voelDdkdjuxnr9nHoeAahAd60rV3B7nBESjwl5SIiIqVAWFkfxjx8Lb2aRWAMvPN7Eo98t4xj3hWgx3/B4QGJP8GfI+wOVaRwZZ2EOacaHt7wFHj52RtPEXB6b/LuTcLxdCpdEClo+lcmIiJSSnh7OBlyRwxv3t4AT6fFb6v3cvsn89nsFwMd33QPmjYItsy1N1CRwrTsG0jZCQGVILaP3dHYasvB4wwan8ispAMAtKyhbdBECoOSchERkVLmnuaRjO7bggoB3mzYf4yuH8/nj4CuENMTTDb8eD8c3WV3mCIFLzP9rCr50+BZehuajY3fQbv3ZvHdom059933n8X8eKrhm4gUHCXlIiIipVBs1WAmP3Y9cVWDST2ZxYPfLOXjMo9iwhpA2kH44S531fynB+B/g9WdXUqm+P/Asb1QNgKa/N3uaGyz5eBxnvt5JS6Tu62Ey8DAn1ey9aCaQIoUJCXlIiIipVSFQB9+eOha/t6iKgDvztzB8x7/xHj4wr7VmAXDcSWOwzXvI8zHcbD8e5sjFslHGcdh3gfu41bPgoe3vfHYaGz8DiysPM9ZlsUYVctFCpSSchERkVLMy8PBa13rM/TOGLw8HPy5aT8m6wQAFgYHLhxkg8uFmfCoKuZSciz+Ao4fgOAoaHSP3dHYaunWI2RfYOcFYww7j6QXckQipYuSchEREaFHXAQ/PtyC+33m4TLnV8wsC7INJM//jw3RieSzk6kw/0P3ceuB4PS0Nx6b7EpO56Fv4lm89fAFx1iWRXiwbyFGJVL6eNgdgIiIiBQNDSOCcASlYh3Ou2JmYdi9LYmgwg1LJP8t+hTSD0P5GtCgh93RFLrMbBf/nreFD/+3gfTMbJyWe/14Xv/yjTH0jIso9BhFShMl5SIiIpJjj1WBOljk9ee5A4Pj6A4OHEkhNDiw8IMTyQ/pybBguPu49XPgLF1/Di/eepjBk9axYf8xAJpVK8fr3eqzYkcyA39eiWVZGGNybt/uHkNUSBmboxYp2UrXTyERERG5qK0Rt2MdGoUx7kvWTzv9ee2sdSR90II3gp8hot51tIkOpVFEME5H3k2iRIqcP0fAiaMQWhvq32F3NIXm0LGTfL/RweKF8QCUK+PFC7fUoXuTKliWRa2KATSNKseY+B3sPJJOeLAvPeMilJCLFAIl5SIiIpLjphta8lx8X97y+BxjLCwMBvftt1k30dVzEdGOnbyb/BSfzOnK3TNux8/XlxtqhtAmugKta4USGlB6u1hLEZd2GBaOcB+3eR4cTnvjKQQul2HUku0M/W0dR9MdWBb0ahbJPztGE+TnlWtsVEgZBt5c26ZIRUovJeUiIiKSo1pIGZrd/hjtf46mh8cswjnATkIZm9WG/t07EFzHjxMTnsRn/USe8BhHR49l/N+JfkxemcnklXsAaFClLG2iQ1VFl6JnwXDISIWK9aFOF7ujKXCJu47y4vhEVuxIBqCKn+GDvzWnWfVQewMTkVyUlIuIiEgud8VF0DTqbsbEt2TaqctYvzrrMlafe76FxF9gytPUTt/GFJ9BLAh/gKHHbmHlnjRW7TrKql1HGT5jI2V9PVVFl6Lh+EFY9Jn7uO0L4Ci5mxClnsjkvWnr+WbhVlwG/L09eLLdNZQ7vJrGEUF2hyci51BSLiIiIuf5y8tY698BUdfD5P/DsW4y1+/4nOsrLebQw8OYcSiEWesPMHf9AY6muyvoqqKL7eZ9AJnHoXJjiL7F7mgKhDGGySv38K/Ja9ifehKA22IqMei2upTzdTJ16mqbIxSRvCgpFxERkSvjXwF6fgerfoKpz8CeBMp/14G72jzPXT0fJwsHCTuSmZm0n1lJB1i9O0VVdLFH6l5Y8qX7uO2LubsYlhCbDxzj5QmrmbfxIOBeivJa13rcUNN9qXpmZqad4YnIRSgpFxERkStnWRBzF1S7ASY9Aet/gz9ehXVT8Og2krioWsRFlePZjrXZn3qC2UkHVEWXwjfvA8g6AeFNoUZ7u6PJVycysxkxcyOfzt5MRrYLLw8HA9rU4OHW1fHxLPmN7ERKAiXlIiIicvUCwqDXaFgxCn59DnbFw6fXQ7tBcG1/cDipEODDXXER3BUXQVa2i4QdycxKOsCs9ftJ3KUquhSQo7sg/j/u4xJWJZ+VtJ9XJq5m26E0AFrVCuW1LvW0jZlIMaOkXERERPKHZUGje6Baa5j4GGz6A6a9BGsnQ7cRUP6anKEeTgdxUeWIiyrHMx2j/7KKXr9KIG2jK6iKLpdv7nuQnQFVW0L1NnZHky/2Hj3Ba5NXM3XVXgDCAn14uXNdOtUPwypBbzqIlBZKykVERCR/la0Cf/sZln0Dv78IO/6EkS2h/WBo1jfPrtd/VUU//aEqulyW5O3ueQjujuvFPGHNynbx9YKtfDB9PcczsnE6LPpcF8WTN9XC31t/1osUV/rXKyIiIvnPsiD2PrimLUwYAFvmwG8DYe0k6PoxlKt2wYeqii75ZvZQcGW6r96Iut7uaK7K0m2HeXFcIuv2pgLQJDKI17s1oG7lQJsjE5GrpaRcRERECk5QJNw7AZb+B6a9DNvmuavmHV6D2Acuaa9oVdHlihzaBAk/uI9vfMneWK7CkeMZvPXrOsbE7wAgyM+T526uTY+4CBx6A0qkRFBSLiIiIgXL4YCm/4Br2sGER92J+ZSnYc1Ed9U8KPKSnyqvKvqc9QeZmbRfVXTJbc47YLKhxk0Q0czuaC6by2X4aelOhvy6liNp7u3MesSF81ynOpQr42VzdCKSn5SUi4iISOEoVw3umwSLP4f/DYYts2HEddDxDWjy9yta71shwIc7Y8O5Mzb8sqvoQT5/XaWXYurAelg5xn3c9nl7Y7kCa/ekMGh8IvHbjgBQOyyA17vVJy6qnM2RiUhBUFIuIiIihcfhgGv7ufeKntAfdiyCSY/D2onQ+SN3k7grdKEq+qyk/czdcPC8Knq9ygFUsRxU3HaEuGoheDiVpJcYs98C44LoW6BKrN3RXLJjJ7MYNn09Xy3YSrbL4Ofl5P/a1+L+llF4an6KlFhKykVERKTwhdSAPr/CnyPgj3/Bxv/BiBbQ6S1o2CtfumT/VRV99e5UVuNg2pdLtBa9JNm3BhJ/cR+3KR5VcmMMvyXu5dVJa9ibcgKAm+uF8XLnulQO8rU5OhEpaErKRURExB4OJ1z3GNTsCOP7wa6lMP4R91rzzsMgICzfXiqvKvrMtXsZPXsVm9O88lyL3qbW6bXoQaqiFyezhgAG6nSBSjF2R/OXth9K4+WJicxKOgBAZDk/Xu1Sj7a1K9gcmYgUFiXlIiIiYq/QWvDANFjwkTuhWv8rfLIQbnkXGtxZIHtLVwjw4Y7GVfDZs4IOHduwZt9xZq47fy36xzPV0b1Y2bPSvRQCy70veRF2Miubz2Zv5pOZGzmZ5cLL6aBf6+r0b1sDH0+n3eGJSCFSUi4iIiL2c3rADU9BrZvdVfM9K+CXf8DaCXDrB+AfWmAv7eF0EFu1HLFVL20tuqroRdjMN9239btDhTr2xnIR8zYcZNCERLYcPA5Ayxrlea1rfa4J9bc5MhGxg5JyERERKToq1oV//AFz34c5Q2HtJNi2AG59D+rdXighnLsWfcVO91r0mUmqohdpu5a6r7KwHNDmObujydP+lBP8a8paJq3YDUBogDcv3VqHLg0rYxXAFSEiUjwoKRcREZGixekJbQZCdCf3GvN9ifDj/e615re8C2XKF1ooZ1fRn+5wdVX0LQePMzZ+BzuPpBMe7EuPuAiqhZQptK+lxDtdJY/pCSE17Y3lHNkuw7cLt/LetPWknszCYcHfW0TxVIdaBPp42h2eiNhMSbmIiIgUTZVi4KGZMOcdmPserP4Fts6F24ZBndtsCelCVfRZSQdYtevoeVX062uG0Da6AkfTM3ljyhosy8IYg2VZfDZ7E293j+GuuAhbvpYSZfsidwd/ywmt/2l3NLkk7EjmxXGrWL07BYCG4WV5vVsDGoSXtTkyESkqlJSLiIhI0eXhBTe+eKZqfmAdjOntroZ2eht8g+0L7Zwq+oHUk8xefyBXFX3Kyj1MOVVFB8CYXLcDf15J06hyRKlifnVmvuG+bdwbylW3N5ZTjqZlMvT3dfyweDvGQKCPB/+8uTa9mkXidOhSdRE5Q0m5iIiIFH1VmkDf2e7u7As+gpVjYPNs6PIR1Opod3SAe31wXlX00Yt3cODYyQs+7qsFW3m1S71CjLSEOLQJln/rXku+ZQ5YHtDqWbujwhjDL8t28ebUtRw6ngHAHY2r8PwtddRzQETypKRcREREigdPH7jpVah9m7tqfmgD/NADGv0Nbn4TfIrO5cBnV9G3HkpjysrduMz541wG/rtgK0u3HVZH98ux/DuY+Bhggcl232eyYctcd7XcJhv2pfLS+EQWbTkMQI0K/rzerT7XVi+8PggiUvwoKRcREZHiJaIp9JsLM16HhZ9AwneweSZ0GQ412tkd3XnCg33dnbVNHln5KWevRQ/08eCGWqG0qRVK6+hQKgT4FGK0xcChTe6E3LjOOWFg4qMQeS2Uv6ZQQ0rLyOKjPzby5dzNZLkMPp4OnmhXiwevr4aXh95gEZGLU1IuIiIixY+nL3R840zV/MgW+O4OiL0fOrwO3gF2R5ijR1wEn83elOc5hwU/9buOLQePM2v9AeasP3DeWnTti36OZd9e5KTlvqS9/eDCiobpa/YxeOJqdiWnA9C+TkUGd6lLeLBfocUgIsWbrT/Vs7OzGTRoENWqVcPX15drrrmGf/3rX5iz3km2LCvPj3feecfGyEVERKRIqNoCHpkPzR52f770axhxnXu9eRFRLaQMb3ePwWGB02Hlun27ewxNqgbTPTac4b0as/Sl9vz8SAseu7EGDaq4L8c/XUG/89OFNPnXdAb8sIwf43ewP/WEzV9ZIXK53B3Wf38RFn+WR5X8NAPJ2wslpB2H0/jHf5fw0Dfx7EpOp0qQL1/8PY4v74tTQi4il8XWSvnbb7/NyJEj+e9//0u9evWIj4+nT58+lC1blscffxyAPXv25HrMr7/+yoMPPkj37t3tCFlERESKGq8ycMtQqNMZJvR3J2XfdIGmD7krpt7+dkfIXXERNI0qx5iz9invGRdxXtf1vDq6z1l/4IJV9HqVA2kTHUrb6Aolr4ruyobtC93706+dCKl7/voxWBAUWaBhZWS5+HLeZj76YwMnMl14OCwealWdx26sgZ+XLkIVkctn60+OBQsW0LVrV2699VYAoqKiGDVqFIsXL84ZExYWlusxEyZMoG3btlSvnvd2FydPnuTkyTMdTlNS3HtCZmZmkpmZmd9fgpQSp+eO5pCUBprvUmyFXwsPzcHxx2Ccy76GJV9gNkwnu/NwTGSL84YX9lyvUtaLp9rlXuv8V68d5OOgS0xFusRUJNtlWLnzKLPWH2TOhoMk7k5h9amPT2ZuItDHg+trlKdVzRBa1Qwpnp2+XVlY2+ZjrZ2IY/1UrOMHck4ZL39MrZtxVW6Kc/rzYFycvbGYOfXfrAa9oID+ny7acphXJq1l04HjADSLCmZw5zrUrOAPmCL9c1M/26U0KQrz/XJe2zLmIl1HCtibb77J559/zrRp06hVqxYrVqygQ4cOvP/++/TufX7nzH379hEeHs5///tf7rnnnjyfc/Dgwbz66qvn3f/DDz/g56dLiUREREqD0JREGm3/Er/MwxgsNod2YG3lO8l2FMNE9QJSMmDdUYu1RyzWJVukZefe+zq8jKFOkKFukIuqAeAsoltjW64sQlNXUzl5CWFHl+GdfSznXIazDHvLNmF3UFMOBNTD5fAEIOLQXBpv/xKDhTsdt7AwLI/8BzvK35DvMaZkwMRtDpYcdF+J4O9h6BblIi7EYBXR76uI2CstLY177rmHo0ePEhgYeNGxtiblLpeLF154gaFDh+J0OsnOzuaNN97g+eefz3P80KFDeeutt9i9ezc+Pnl3Is2rUh4REcHBgwf/8pshciGZmZlMnz6dm266CU9PT7vDESlQmu9SYpxIwfm/QThWfA+AKXcN2Z0/xoQ3BUrWXM+rin62IldFz0zH2jwTR9JkrPW/YZ08E6/xK4+pdQuuOl0wVa8H5wX+3xzejGPF91jJ2zFBkbga9oZyeV9JeaWyXYbR8Tt5f/oGUk5kYVlwd1w4T99Uk7K+xWvOlKT5LvJXisJ8T0lJISQk5JKSclsvXx87dizff/89P/zwA/Xq1SMhIYEnn3ySypUrc9999503/j//+Q+9e/e+YEIO4O3tjbf3+b9oPD099QNIrprmkZQmmu9S7HmWh9tHQP3bYeJjWIc34fHNrdDiUWj7Ipya3yVhrnsCza4Jpdk1ofyzE7nWos/dcIDktEymJu5jauI+4Mxa9DbRFWhcWGvRM47DhumwZgJsmAYZZyri+Fd09wSo2xUr8josp8dfdyOuGA0dXsv51JnP4SbuOsqL41axYudRwN0F//VuDWgUEZTPr1S4SsJ8F7lUds73y3ldW5PyZ599lueee467774bgAYNGrBt2zaGDBlyXlI+d+5ckpKSGDNmjB2hioiISHFV8ybovxB+ex5WjIIFH8H637E6D7c7sgITGuBN99hwuseGk+0yJOxIZnbSfmatP8DKnUfPW4teYPuin0hxJ+BrxsOG/0FW+plzgeFQtwvU6QIRzcFRNJrUpZzI5L3fk/j2z224DAR4e/B0h1rc2yIKp0PXqotI/rM1KU9LS8Nxzg9gp9OJy3X+Nhf//ve/iY2NpWHDhoUVnoiIiJQUvsFw+6fuBHDSE3AwCefXnahT4RbIapdTNS+JnA6L2KrBxFYN5qlzOrqfrqLn1dH9iqvo6Ucg6Td3RXzTH5CdceZccJT7/0HdblClCUVpQbYxhokrdvP6lLUcSHUvhezSsDIv3VqHCoH5+EaFiMg5bE3KO3fuzBtvvEFkZCT16tVj+fLlvP/++zzwwAO5xqWkpPDjjz/y3nvv2RSpiIiIlAi1b4HIa2Hqs1iJP1Fr3yTMV5vcCXul0vHGf4FU0Y8fgnWT3VuXbZ4Frqwz58rXgLpd3R9hMUUqET9t04FjvDwhkfkbDwFQPaQMr3Wtz/U1Q2yOTERKA1uT8uHDhzNo0CD69+/P/v37qVy5Mg8//DAvv/xyrnGjR4/GGEOvXr1silRERERKDL9ycOe/yYq+lewJj+O9fw18cSO0ehZuePrCjcVKoKuqogefxGP9FHdFfOt8MNlnnrhCXXcSXqcLVKhTJBNxgBOZ2XwycyOfzd5MRrYLbw8Hj7atQd/W1fH2yO9V6iIiebM1KQ8ICGDYsGEMGzbsouP69u1L3759CycoERERKRVM7c7MSDpOx6xpONZNhFlD3NXebp9CWH27w7PFX1XRD+3ewvF9Y3HNX4zDkcTp3cEBdxX8dEU8pKZtX8OlmrluPy9PTGTHYfc69zbRobzWpT6R5bWFrogULluTchERERE7ZXgGkt3l3zjWT4IpT8PeVfB5G2gzEFr+HzhL759KOVX0wKM8VWYZmZ7j8dyzNNeY5a4a/JrdlF9dzQjMqEmb9FDaHCtP42BX4XR0vwK7k9N5bdIaflu9F4CwQB9e6VyXm+uHYRXRir6IlGyl9zeNiIiICLgvra7fHapeD5OfhKSpMON1WDfFXTWvUNvuCAvfwY2wdgKsmQh7EgD3tmtgQeS1uOp0ITGwNTN3efDn+gPs2HkUzl2LXtO9Dr1NrdAi0SgtM9vFV/O3MOx/G0jLyMbpsHigZRRPtK+Fv7f+JBYR++gnkIiIiAhAQEW4+wdYORZ+fRZ2L4fPWsGNL7r3NneU8DXG+9e514evmQD7V5+533JA1Zan1oh3hoAwHEAMEFMPnuoQzcFjp9aiJx1gzum16Kv2MGVVPnV0v0rxWw/z4rhEkvalAhBXNZjXb69P7bDAQo1DRCQvSspFRERETrMsaNgTqrWCSY+799ie/jKsnQTdRhaLtdKXzBj35fprJ7oT8YPrz5xzeEC11u59xGvfBmUu3oU8xN+bO5qEc0eTS+zoXkhV9MPHMxgydS0/Lt0JQLCfJ893qsOdseE4tOe4iBQRSspFREREzhVYCe4ZCwnfw2/Pw84l8On10O5laP4IOIrmeum/ZAzsXnaqIj4Rjmw5c87pBdfc6K6I17rZ3aX+Cpzb0f2vquh1KwXStnb+VtFdLsPY+B289ds6ktMyAbi7aQQDb65NcBmvq35+EZH8pKRcREREJC+WBY3/5q4YT3wMNs+E31+AtZOh2ydQrrrdEV4al8v9psKaCe6q+NEdZ855+ECN9lC3G9TqCD75fzn3X1XR1+xJYc2e/Kuir9mdwkvjV7FsezIAtcMCeOP2+sRWvbI3GURECpqSchEREZGLCYqAe8fB0q/g95dg+wIY2RJueg3iHiyaVXNXNmxb4E7C106C1D1nznmWcSfgdbtAjZvA27/QwrqSKvrptehNInNX0bccPM7Y+B3sPJJOeLAvt8VU4pdlu/h6wVayXYYyXk7+76Za3H9dVJHtBC8iAkrKRURERP6aZUHcA+7Luyc8ClvnwtRn3NXnrp9AcFW7I4TsTHdcaya4O8cfP3DmnHcgRHdyX5p+zY3g6WtfnGc5t4q+Ymcys5IOMCtpf64q+ohZuavoqemZvDF1LZZlYYx7r/SRszblPO8tDcIYdFtdKpUtGl+niMjFKCkXERERuVTBUfD3ibDkS/jfK+4keOR10OF1iL3fnbwXpqyTsHm2OxFPmgLpR86c8w2G6FvdiXj11uDhXbixXSanw6JJZDBNIoN56qZaf1lFB9xr5M/xdvcG9GwaWYiRi4hcHSXlIiIiIpfD4YDmfaFGO5gwALYvdO9vvmYCdP0YyoYX7OtnpsPGP9yXpif9CidTzpzzC4E6t7kT8agbwOlZsLEUoAtV0Uct3s6B1JN5PsZpWWw9lFbIkYqIXB0l5SIiIiJXovw1cP8UWPQp/PGauxHciBZw8xBo1Dt/q+YZx93bs62ZAOunQebxM+f8w9zrw+t0garXlcj91M+uom85eJwpK3fjOr9IjsGw80h64QcoInIVlJSLiIiIXCmHE1oMgJodYPwj7i7nEwa4k+fOH7m3VrtSJ1Jg/e+wZry7Mp51VrJZNsKdhNftCuFNi2azuQISHuyLZVl5XrpuWRbhwVpHLiLFi5JyERERkasVUhMe+B0WDIeZb7ir2iOaQ6d3IKbHpVfN04+4L0lfMwE2zYDsjDPngqu5K+J1u0LlJoW/fr2I6BEXwWezN+V5zhhDz7iIQo5IROTqKCkXERERyQ8OJ1z/JNS6Gcb3g93LYVzfU1XzYXAyFZZ/C8nbISgSGt/rvgT++EFYNxnWTIQts8GVdeY5Q2q5k/A6XSCsQalNxM9WLaQMb3ePYeDPK3O6r5++fbt7DFEhZewOUUTksigpFxEREclPFWrDg/+D+R/ArLfdXdE3z4LMNLAcgAEsmDcMyteEwxvBuM48vmL9M5emV6htz9dQxN0VF0HTqHKMOWuf8p5xEUrIRaRYUlIuIiIikt+cHtDqWajVCX7qAwfXu+832bnHHTp1f6VGp5q1dYWQGoUaanEVFVKGgTfrTQsRKf6UlIuIiIgUlLD67sT84AbcFfJzWRDXB277oLAjExGRIqL0tOoUERERsUPKzguvBbcsOHG0cOMREZEiRUm5iIiISEEKigQu1KDNOnVeRERKKyXlIiIiIgWp8b3kfek67vsb31uY0YiISBGjpFxERESkIJW/Brp87O68bjlz33b52H1eRERKLTV6ExERESlojXtD5LV571MuIiKlmpJyERERkcJQ/hpoP9juKEREpIjR5esiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNvGwO4CCZowBICUlxeZIpDjLzMwkLS2NlJQUPD097Q5HpEBpvktpobkupYnmu5QmRWG+n84/T+ejF1Pik/LU1FQAIiIibI5ERERERERESpPU1FTKli170TGWuZTUvRhzuVzs3r2bgIAALMuyOxwpplJSUoiIiGDHjh0EBgbaHY5IgdJ8l9JCc11KE813KU2Kwnw3xpCamkrlypVxOC6+arzEV8odDgfh4eF2hyElRGBgoH6RSamh+S6lhea6lCaa71Ka2D3f/6pCfpoavYmIiIiIiIjYREm5iIiIiIiIiE2UlItcAm9vb1555RW8vb3tDkWkwGm+S2mhuS6liea7lCbFbb6X+EZvIiIiIiIiIkWVKuUiIiIiIiIiNlFSLiIiIiIiImITJeUiIiIiIiIiNlFSLiIiIiIiImITJeVSIs2ZM4fOnTtTuXJlLMti/Pjxuc4bY3j55ZepVKkSvr6+tG/fng0bNuQac/jwYXr37k1gYCBBQUE8+OCDHDt2LNeYlStXcsMNN+Dj40NERARDhw49L5Yff/yR2rVr4+PjQ4MGDZg6dWq+f71Sug0ZMoSmTZsSEBBAhQoV6NatG0lJSbnGnDhxggEDBlC+fHn8/f3p3r07+/btyzVm+/bt3Hrrrfj5+VGhQgWeffZZsrKyco2ZNWsWTZo0wdvbmxo1avD111+fF88nn3xCVFQUPj4+NG/enMWLF+f71yyl18iRI4mJiSEwMJDAwEBatGjBr7/+mnNec11KqrfeegvLsnjyySdz7tN8l5Ji8ODBWJaV66N27do550v8XDciJdDUqVPNiy++aH755RcDmHHjxuU6/9Zbb5myZcua8ePHmxUrVpguXbqYatWqmfT09JwxN998s2nYsKH5888/zdy5c02NGjVMr169cs4fPXrUVKxY0fTu3dskJiaaUaNGGV9fX/PZZ5/ljJk/f75xOp1m6NChZs2aNeall14ynp6eZtWqVQX+PZDSo2PHjuarr74yiYmJJiEhwdxyyy0mMjLSHDt2LGdMv379TEREhPnjjz9MfHy8ufbaa811112Xcz4rK8vUr1/ftG/f3ixfvtxMnTrVhISEmOeffz5nzObNm42fn5956qmnzJo1a8zw4cON0+k0v/32W86Y0aNHGy8vL/Of//zHrF692jz00EMmKCjI7Nu3r3C+GVLiTZw40UyZMsWsX7/eJCUlmRdeeMF4enqaxMREY4zmupRMixcvNlFRUSYmJsY88cQTOfdrvktJ8corr5h69eqZPXv25HwcOHAg53xJn+tKyqXEOzcpd7lcJiwszLzzzjs59yUnJxtvb28zatQoY4wxa9asMYBZsmRJzphff/3VWJZldu3aZYwxZsSIESY4ONicPHkyZ8zAgQNNdHR0zuc9evQwt956a654mjdvbh5++OF8/RpFzrZ//34DmNmzZxtj3PPb09PT/Pjjjzlj1q5dawCzcOFCY4z7jSyHw2H27t2bM2bkyJEmMDAwZ47/85//NPXq1cv1Wj179jQdO3bM+bxZs2ZmwIABOZ9nZ2ebypUrmyFDhuT/FypySnBwsPnyyy8116VESk1NNTVr1jTTp083rVu3zknKNd+lJHnllVdMw4YN8zxXGua6Ll+XUmfLli3s3buX9u3b59xXtmxZmjdvzsKFCwFYuHAhQUFBxMXF5Yxp3749DoeDRYsW5Yxp1aoVXl5eOWM6duxIUlISR44cyRlz9uucHnP6dUQKwtGjRwEoV64cAEuXLiUzMzPXXKxduzaRkZG55nyDBg2oWLFizpiOHTuSkpLC6tWrc8ZcbD5nZGSwdOnSXGMcDgft27fXnJcCkZ2dzejRozl+/DgtWrTQXJcSacCAAdx6663nzUnNdylpNmzYQOXKlalevTq9e/dm+/btQOmY60rKpdTZu3cvQK5/tKc/P31u7969VKhQIdd5Dw8PypUrl2tMXs9x9mtcaMzp8yL5zeVy8eSTT9KyZUvq168PuOehl5cXQUFBucaeO+evdD6npKSQnp7OwYMHyc7O1pyXArdq1Sr8/f3x9vamX79+jBs3jrp162quS4kzevRoli1bxpAhQ847p/kuJUnz5s35+uuv+e233xg5ciRbtmzhhhtuIDU1tVTMdY8CfXYRESlUAwYMIDExkXnz5tkdikiBiY6OJiEhgaNHj/LTTz9x3333MXv2bLvDEslXO3bs4IknnmD69On4+PjYHY5IgerUqVPOcUxMDM2bN6dq1aqMHTsWX19fGyMrHKqUS6kTFhYGcF7Hxn379uWcCwsLY//+/bnOZ2Vlcfjw4Vxj8nqOs1/jQmNOnxfJT48++iiTJ09m5syZhIeH59wfFhZGRkYGycnJucafO+evdD4HBgbi6+tLSEgITqdTc14KnJeXFzVq1CA2NpYhQ4bQsGFDPvzwQ811KVGWLl3K/v37adKkCR4eHnh4eDB79mw++ugjPDw8qFixoua7lFhBQUHUqlWLjRs3loqf7UrKpdSpVq0aYWFh/PHHHzn3paSksGjRIlq0aAFAixYtSE5OZunSpTljZsyYgcvlonnz5jlj5syZQ2ZmZs6Y6dOnEx0dTXBwcM6Ys1/n9JjTryOSH4wxPProo4wbN44ZM2ZQrVq1XOdjY2Px9PTMNReTkpLYvn17rjm/atWqXG9GTZ8+ncDAQOrWrZsz5mLz2cvLi9jY2FxjXC4Xf/zxh+a8FCiXy8XJkyc116VEadeuHatWrSIhISHnIy4ujt69e+cca75LSXXs2DE2bdpEpUqVSsfP9gJtIydik9TUVLN8+XKzfPlyA5j333/fLF++3Gzbts0Y494SLSgoyEyYMMGsXLnSdO3aNc8t0Ro3bmwWLVpk5s2bZ2rWrJlrS7Tk5GRTsWJFc++995rExEQzevRo4+fnd96WaB4eHubdd981a9euNa+88oq2RJN898gjj5iyZcuaWbNm5dpKJC0tLWdMv379TGRkpJkxY4aJj483LVq0MC1atMg5f3orkQ4dOpiEhATz22+/mdDQ0Dy3Enn22WfN2rVrzSeffJLnViLe3t7m66+/NmvWrDF9+/Y1QUFBubqhilyN5557zsyePdts2bLFrFy50jz33HPGsiwzbdo0Y4zmupRsZ3dfN0bzXUqOp59+2syaNcts2bLFzJ8/37Rv396EhISY/fv3G2NK/lxXUi4l0syZMw1w3sd9991njHFvizZo0CBTsWJF4+3tbdq1a2eSkpJyPcehQ4dMr169jL+/vwkMDDR9+vQxqampucasWLHCXH/99cbb29tUqVLFvPXWW+fFMnbsWFOrVi3j5eVl6tWrZ6ZMmVJgX7eUTnnNdcB89dVXOWPS09NN//79TXBwsPHz8zO333672bNnT67n2bp1q+nUqZPx9fU1ISEh5umnnzaZmZm5xsycOdM0atTIeHl5merVq+d6jdOGDx9uIiMjjZeXl2nWrJn5888/C+LLllLqgQceMFWrVjVeXl4mNDTUtGvXLichN0ZzXUq2c5NyzXcpKXr27GkqVapkvLy8TJUqVUzPnj3Nxo0bc86X9LluGWNMwdbiRURERERERCQvWlMuIiIiIiIiYhMl5SIiIiIiIiI2UVIuIiIiIiIiYhMl5SIiIiIiIiI2UVIuIiIiIiIiYhMl5SIiIiIiIiI2UVIuIiIiIiIiYhMl5SIiIiIiIiI2UVIuIiIiIiIiYhMl5SIiIkXEgQMH8PLy4vjx42RmZlKmTBm2b99+0ccMHjyYRo0a5VsMbdq04cknn8y35xMREZGLU1IuIiJSRCxcuJCGDRtSpkwZli1bRrly5YiMjLQ7LBERESlASspFRESKiAULFtCyZUsA5s2bl3N8Oe6//366devGu+++S6VKlShfvjwDBgwgMzMzZ8yIESOoWbMmPj4+VKxYkTvvvDPnsbNnz+bDDz/Esiwsy2Lr1q1kZ2fz4IMPUq1aNXx9fYmOjubDDz+87Nc9efIkAwcOJCIiAm9vb2rUqMG///3vnPOJiYl06tQJf39/KlasyL333svBgwdzzv/00080aNAAX19fypcvT/v27Tl+/Phlf49ERESKEg+7AxARESnNtm/fTkxMDABpaWk4nU6+/vpr0tPTsSyLoKAg7rnnHkaMGHHJzzlz5kwqVarEzJkz2bhxIz179qRRo0Y89NBDxMfH8/jjj/Ptt99y3XXXcfjwYebOnQvAhx9+yPr166lfvz6vvfYaAKGhobhcLsLDw/nxxx8pX748CxYsoG/fvlSqVIkePXpc0usC/P3vf2fhwoV89NFHNGzYkC1btuQk3cnJydx444384x//4IMPPiA9PZ2BAwfSo0cPZsyYwZ49e+jVqxdDhw7l9ttvJzU1lblz52KMyZf/DyIiInaxjH6biYiI2CYrK4udO3eSkpJCXFwc8fHxlClThkaNGjFlyhQiIyPx9/cnJCQkz8cPHjyY8ePHk5CQALgr1rNmzWLTpk04nU4AevTogcPhYPTo0fzyyy/06dOHnTt3EhAQcN7ztWnThkaNGjFs2LCLxv3oo4+yd+9efvrpp0t63fXr1xMdHc306dNp3779ec/3+uuvM3fuXH7//fec+3bu3ElERARJSUkcO3aM2NhYtm7dStWqVf/y+yoiIlJc6PJ1ERERG3l4eBAVFcW6deto2rQpMTEx7N27l4oVK9KqVSuioqIumJBfSL169XISY4BKlSqxf/9+AG666SaqVq1K9erVuffee/n+++9JS0v7y+f85JNPiI2NJTQ0FH9/fz7//PPzmtBd7HUTEhJwOp20bt06z+dfsWIFM2fOxN/fP+ejdu3aAGzatImGDRvSrl07GjRowF133cUXX3zBkSNHLuv7IiIiUhQpKRcREbFRvXr18Pf3595772Xx4sX4+/vTrl07tm7dir+/P/Xq1bvs5/T09Mz1uWVZuFwuAAICAli2bBmjRo2iUqVKvPzyyzRs2JDk5OQLPt/o0aN55plnePDBB5k2bRoJCQn06dOHjIyMS35dX1/fi8Z87NgxOnfuTEJCQq6PDRs20KpVK5xOJ9OnT+fXX3+lbt26DB8+nOjoaLZs2XKp3xYREZEiSUm5iIiIjaZOnUpCQgJhYWF89913JCQkUL9+fYYNG0ZCQgJTp07N99f08PCgffv2DB06lJUrV7J161ZmzJgBgJeXF9nZ2bnGz58/n+uuu47+/fvTuHFjatSowaZNmy7rNRs0aIDL5WL27Nl5nm/SpAmrV68mKiqKGjVq5PooU6YM4E7yW7Zsyauvvsry5cvx8vJi3LhxV/AdEBERKTqUlIuIiNioatWq+Pv7s2/fPrp27UpERASrV6+me/fu1KhRI9/XT0+ePJmPPvqIhIQEtm3bxjfffIPL5SI6OhqAqKgoFi1axNatWzl48CAul4uaNWsSHx/P77//zvr16xk0aBBLliy5rNeNiorivvvu44EHHmD8+PFs2bKFWbNmMXbsWAAGDBjA4cOH6dWrF0uWLGHTpk38/vvv9OnTh+zsbBYtWsSbb75JfHw827dv55dffuHAgQPUqVMnX78/IiIihU1JuYiIiM1mzZpF06ZN8fHxYfHixYSHh1OpUqUCea2goCB++eUXbrzxRurUqcOnn37KqFGjci6Tf+aZZ3A6ndStW5fQ0FC2b9/Oww8/zB133EHPnj1p3rw5hw4don///pf92iNHjuTOO++kf//+1K5dm4ceeihnS7PKlSszf/58srOz6dChAw0aNODJJ58kKCgIh8NBYGAgc+bM4ZZbbqFWrVq89NJLvPfee3Tq1Clfvz8iIiKFTd3XRURERERERGyiSrmIiIiIiIiITZSUi4iIiIiIiNhESbmIiIiIiIiITZSUi4iIiIiIiNhESbmIiIiIiIiITZSUi4iIiIiIiNhESbmIiIiIiIiITZSUi4iIiIiIiNhESbmIiIiIiIiITZSUi4iIiIiIiNhESbmIiIiIiIiITf4f2wgUtOf9bNUAAAAASUVORK5CYII=",
"text/plain": [
"