OnlineSmoothBoost#
- class capymoa.classifier.OnlineSmoothBoost[source]#
Bases:
MOAClassifier
Online Smooth Boost.
Online Smooth Boost [1] is a ensemble classifier. Incremental on-line boosting with Theoretical Justifications of Shang-Tse Chen.
>>> from capymoa.classifier import OnlineSmoothBoost >>> from capymoa.datasets import ElectricityTiny >>> from capymoa.evaluation import prequential_evaluation >>> >>> stream = ElectricityTiny() >>> classifier = OnlineSmoothBoost(stream.get_schema()) >>> results = prequential_evaluation(stream, classifier, max_instances=1000) >>> print(f"{results['cumulative'].accuracy():.1f}") 87.8
- __init__(
- schema: Schema | None = None,
- random_seed: int = 0,
- base_learner='trees.HoeffdingTree',
- boosting_iterations: int = 100,
- gamma=0.1,
OnlineSmoothBoost Classifier
- Parameters:
schema – The schema of the stream.
random_seed – The random seed passed to the MOA learner.
base_learner – The base learner to be trained. Default trees.HoeffdingTree.
boosting_iterations – The number of boosting iterations (ensemble size).
gamma – The value of the gamma parameter.
- predict(instance)[source]#
Predict the label of an instance.
The base implementation calls
predict_proba()
and returns the label with the highest probability.- Parameters:
instance – The instance to predict the label for.
- Returns:
The predicted label or
None
if the classifier is unable to make a prediction.
- predict_proba(instance)[source]#
Return probability estimates for each label.
- Parameters:
instance – The instance to estimate the probabilities for.
- Returns:
An array of probabilities for each label or
None
if the classifier is unable to make a prediction.
- train(instance)[source]#
Train the classifier with a labeled instance.
- Parameters:
instance – The labeled instance to train the classifier with.
- random_seed: int#
The random seed for reproducibility.
When implementing a classifier ensure random number generators are seeded.