LEDGenerator#
- class capymoa.stream.generator.LEDGenerator[source]#
Bases:
Stream
An LED Generator
>>> from capymoa.stream.generator import LEDGenerator ... >>> stream = LEDGenerator() >>> stream.next_instance() LabeledInstance( Schema(generators.LEDGenerator ), x=ndarray(..., 24), y_index=5, y_label='5' ) >>> stream.next_instance().x array([1., 1., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 1., 1.])
- __init__(
- instance_random_seed: int = 1,
- noise_percentage: int = 10,
- reduce_data: bool = False,
Construct an LED Generator
- Parameters:
instance_random_seed – Seed for random generation of instances.
noise_percentage – Percentage of noise to add to the data
reduce_data – Reduce the data to only contain 7 relevant binary attributes
- next_instance() LabeledInstance | RegressionInstance [source]#
Return the next instance in the stream.
- Raises:
ValueError – If the machine learning task is neither a regression nor a classification task.
- Returns:
A labeled instances or a regression depending on the schema.