DDM#
- class capymoa.drift.detectors.DDM[source]#
Bases:
MOADriftDetector
Drift-Detection-Method (DDM) Drift Detector
Example:#
>>> import numpy as np >>> from capymoa.drift.detectors import DDM >>> np.random.seed(0) >>> >>> detector = DDM() >>> >>> data_stream = np.random.randint(2, size=2000) >>> for i in range(999, 2000): ... data_stream[i] = np.random.randint(4, high=8) >>> >>> for i in range(2000): ... detector.add_element(data_stream[i]) ... if detector.detected_change(): ... print('Change detected in data: ' + str(data_stream[i]) + ' - at index: ' + str(i)) Change detected in data: 4 - at index: 1005
Reference:#
Gama, Joao, et al. “Learning with drift detection.” Advances in Artificial Intelligence–SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-Ocotber 1, 2004.
- __init__(
- min_n_instances: int = 30,
- warning_level: float = 2.0,
- out_control_level: float = 3.0,
- CLI: str | None = None,
- Parameters:
moa_detector – The MOA detector object or class identifier.
CLI – The command-line interface (CLI) configuration for the MOA drift detector, defaults to None