LEDGeneratorDrift#
- class capymoa.stream.generator.LEDGeneratorDrift[source]#
Bases:
Stream
An LED Generator Drift
>>> from capymoa.stream.generator import LEDGeneratorDrift ... >>> stream = LEDGeneratorDrift() >>> stream.next_instance() LabeledInstance( Schema(generators.LEDGeneratorDrift -d 7), x=ndarray(..., 24), y_index=5, y_label='5' ) >>> stream.next_instance().x array([0., 0., 1., 0., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 1., 0., 1., 1.])
- __init__(
- instance_random_seed: int = 1,
- noise_percentage: int = 10,
- reduce_data: bool = False,
- number_of_attributes_with_drift: int = 7,
Construct an LED Generator Drift
- Parameters:
instance_random_seed – Seed for random generation of instances.
noise_percentage – Percentage of noise to add to the data
reduce_data – Reduce the data to only contain 7 relevant binary attributes
number_of_attributes_with_drift – Number of attributes with drift
- next_instance() LabeledInstance | RegressionInstance [source]#
Return the next instance in the stream.
- Raises:
ValueError – If the machine learning task is neither a regression nor a classification task.
- Returns:
A labeled instances or a regression depending on the schema.