LEDGeneratorDrift#
- class capymoa.stream.generator.LEDGeneratorDrift[source]#
Bases:
MOAStream
An LED Generator Drift
>>> from capymoa.stream.generator import LEDGeneratorDrift ... >>> stream = LEDGeneratorDrift() >>> stream.next_instance() LabeledInstance( Schema(generators.LEDGeneratorDrift -d 7), x=[1. 1. 0. ... 0. 0. 0.], y_index=5, y_label='5' ) >>> stream.next_instance().x array([0., 0., 1., 0., 1., 0., 1., 1., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 1., 0., 1., 1.])
- __init__(
- instance_random_seed: int = 1,
- noise_percentage: int = 10,
- reduce_data: bool = False,
- number_of_attributes_with_drift: int = 7,
Construct an LED Generator Drift
- Parameters:
instance_random_seed – Seed for random generation of instances.
noise_percentage – Percentage of noise to add to the data
reduce_data – Reduce the data to only contain 7 relevant binary attributes
number_of_attributes_with_drift – Number of attributes with drift
- __iter__() Iterator[_AnyInstance] [source]#
Get an iterator over the stream.
This will NOT restart the stream if it has already been iterated over. Please use the
restart()
method to restart the stream.- Yield:
An iterator over the stream.
- __next__() _AnyInstance [source]#
Get the next instance in the stream.
- Returns:
The next instance in the stream.