HyperPlaneClassification#
- class capymoa.stream.generator.HyperPlaneClassification[source]#
Bases:
Stream
Generates HyperPlane concepts functions.
>>> from capymoa.stream.generator import HyperPlaneClassification ... >>> stream = HyperPlaneClassification() >>> stream.next_instance() LabeledInstance( Schema(generators.HyperplaneGenerator ), x=ndarray(..., 10), y_index=0, y_label='class1' ) >>> stream.next_instance().x array([0.00485253, 0.85225356, 0.02341807, 0.70500995, 0.27502995, 0.0753878 , 0.61059154, 0.95493077, 0.2740691 , 0.19020221])
- __init__(
- instance_random_seed: int = 1,
- number_of_classes: int = 2,
- number_of_attributes: int = 10,
- number_of_drifting_attributes: int = 2,
- magnitude_of_change: float = 0.0,
- noise_percentage: int = 5,
- sigma_percentage: int = 10,
Construct a HyperPlane Classification datastream generator.
- Parameters:
instance_random_seed – Seed for random generation of instances, defaults to 1
number_of_classes – The number of classes of the generated instances, defaults to 2
number_of_attributes – The number of attributes of the generated instances, defaults to 10
number_of_drifting_attributes – The number of drifting attributes, defaults to 2
magnitude_of_change – Magnitude of change in the generated instances, defaults to 0.0
noise_percentage – Percentage of noise to add to the data, defaults to 10
sigma_percentage – Percentage of sigma to add to the data, defaults to 10
- next_instance() LabeledInstance | RegressionInstance [source]#
Return the next instance in the stream.
- Raises:
ValueError – If the machine learning task is neither a regression nor a classification task.
- Returns:
A labeled instances or a regression depending on the schema.