EWMAChart#
- class capymoa.drift.detectors.EWMAChart[source]#
Bases:
MOADriftDetector
EWMA Charts Drift Detector
Example:#
>>> import numpy as np >>> from capymoa.drift.detectors import EWMAChart >>> np.random.seed(0) >>> >>> detector = EWMAChart() >>> >>> data_stream = np.random.randint(2, size=2000) >>> for i in range(999, 2000): ... data_stream[i] = np.random.randint(4, high=8) >>> >>> for i in range(2000): ... detector.add_element(data_stream[i]) ... if detector.detected_change(): ... print('Change detected in data: ' + str(data_stream[i]) + ' - at index: ' + str(i)) Change detected in data: 5 - at index: 999
Reference:#
Ross, Gordon J., et al. “Exponentially weighted moving average charts for detecting concept drift.” Pattern recognition letters 33.2 (2012): 191-198.
- __init__(
- min_n_instances: int = 30,
- lambda_: float = 0.2,
- CLI: str | None = None,
- Parameters:
moa_detector – The MOA detector object or class identifier.
CLI – The command-line interface (CLI) configuration for the MOA drift detector, defaults to None