NoChange#
- class capymoa.classifier.NoChange[source]#
Bases:
MOAClassifier
NoChange classifier.
Always predicts the last class seen.
Example usages:
>>> from capymoa.datasets import ElectricityTiny >>> from capymoa.classifier import NoChange >>> from capymoa.evaluation import prequential_evaluation >>> stream = ElectricityTiny() >>> schema = stream.get_schema() >>> learner = NoChange(schema) >>> results = prequential_evaluation(stream, learner, max_instances=1000) >>> results["cumulative"].accuracy() 85.9
- __init__(schema: Schema | None = None)[source]#
NoChange class classifier.
- Parameters:
schema – The schema of the stream.
- predict(instance)[source]#
Predict the label of an instance.
The base implementation calls
predict_proba()
and returns the label with the highest probability.- Parameters:
instance – The instance to predict the label for.
- Returns:
The predicted label or
None
if the classifier is unable to make a prediction.
- predict_proba(instance)[source]#
Return probability estimates for each label.
- Parameters:
instance – The instance to estimate the probabilities for.
- Returns:
An array of probabilities for each label or
None
if the classifier is unable to make a prediction.
- train(instance)[source]#
Train the classifier with a labeled instance.
- Parameters:
instance – The labeled instance to train the classifier with.
- random_seed: int#
The random seed for reproducibility.
When implementing a classifier ensure random number generators are seeded.