ABCD#
- class capymoa.drift.detectors.ABCD[source]#
 Bases:
BaseDriftDetector- __init__(
 - delta_drift: float = 0.002,
 - delta_warn: float = 0.01,
 - model_id: str = 'ae',
 - split_type: str = 'ed',
 - encoding_factor: float = 0.5,
 - update_epochs: int = 50,
 - num_splits: int = 20,
 - max_size: int = np.inf,
 - subspace_threshold: float = 2.5,
 - n_min: int = 100,
 - maximum_absolute_value: float = 1.0,
 - bonferroni: bool = False,
 - Parameters:
 delta_drift – The desired confidence level at which a drift is detected
delta_warn – The desired confidence level at which a warning is detected
model_id – The name of the model to use
update_epochs – The number of epochs to train the AE after a change occurred
split_type – Investigation of different split types
subspace_threshold – Called tau in the paper
bonferroni – Use bonferroni correction to account for multiple testing?
encoding_factor – The relative size of the bottleneck
maximum_absolute_value – The maximum absolute value that one can expect (e.g. 1.0 for normalized data). Smaller values can increase false alarms but speed up change detection
num_splits – The number of time point to evaluate