ABCD#
- class capymoa.drift.detectors.ABCD[source]#
Bases:
BaseDriftDetector
- __init__(
- delta_drift: float = 0.002,
- delta_warn: float = 0.01,
- model_id: str = 'ae',
- split_type: str = 'ed',
- encoding_factor: float = 0.5,
- update_epochs: int = 50,
- num_splits: int = 20,
- max_size: int = inf,
- subspace_threshold: float = 2.5,
- n_min: int = 100,
- maximum_absolute_value: float = 1.0,
- bonferroni: bool = False,
- Parameters:
delta_drift – The desired confidence level at which a drift is detected
delta_warn – The desired confidence level at which a warning is detected
model_id – The name of the model to use
update_epochs – The number of epochs to train the AE after a change occurred
split_type – Investigation of different split types
subspace_threshold – Called tau in the paper
bonferroni – Use bonferroni correction to account for multiple testing?
encoding_factor – The relative size of the bottleneck
maximum_absolute_value – The maximum absolute value that one can expect (e.g. 1.0 for normalized data). Smaller values can increase false alarms but speed up change detection
num_splits – The number of time point to evaluate