RandomRBFGeneratorDrift#
- class capymoa.stream.generator.RandomRBFGeneratorDrift[source]#
Bases:
Stream
Generates Random RBF concepts functions.
- __init__(
- model_random_seed: int = 1,
- instance_random_seed: int = 1,
- number_of_classes: int = 2,
- number_of_attributes: int = 10,
- number_of_centroids: int = 50,
- number_of_drifting_centroids: int = 2,
- magnitude_of_change: float = 0.0,
Construct a RBF Generator Classification/Clustering datastream generator.
- Parameters:
instance_random_seed – Seed for random generation of instances, defaults to 1
number_of_classes – The number of classes of the generated instances, defaults to 2
number_of_attributes – The number of attributes of the generated instances, defaults to 10
number_of_drifting_centroids – The number of drifting attributes, defaults to 2
magnitude_of_change – Magnitude of change in the generated instances, defaults to 0.0
noise_percentage – Percentage of noise to add to the data, defaults to 10
sigma_percentage – Percentage of sigma to add to the data, defaults to 10
- next_instance() LabeledInstance | RegressionInstance [source]#
Return the next instance in the stream.
- Raises:
ValueError – If the machine learning task is neither a regression nor a classification task.
- Returns:
A labeled instances or a regression depending on the schema.