WeightedkNN#

class capymoa.classifier.WeightedkNN[source]#

Bases: MOAClassifier

WeightedKNN Reference:

‘Effective Weighted k-Nearest Neighbors for Dynamic Data Streams’ Maroua Bahri IEEE International Conference on Big Data (Big Data), 2022 <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10020652> Example usages: >>> from capymoa.datasets import ElectricityTiny >>> from capymoa.classifier import WeightedkNN >>> from capymoa.evaluation import prequential_evaluation >>> stream = ElectricityTiny() >>> schema = stream.get_schema() >>> learner = WeightedkNN(schema) >>> results = prequential_evaluation(stream, learner, max_instances=1000) >>> results[“cumulative”].accuracy() 74.7

__init__(
schema: Schema,
k: int = 10,
limit: int = 1000,
)[source]#

Weighted KNN Classifier :param schema: The schema of the stream. :param k: The number of neighbors. :param w: The maximum number of instances to store.

CLI_help()[source]#
predict(instance)[source]#
predict_proba(instance)[source]#
train(instance)[source]#