AgrawalGenerator#
- class capymoa.stream.generator.AgrawalGenerator[source]#
- Bases: - MOAStream- An Agrawal Generator - >>> from capymoa.stream.generator import AgrawalGenerator ... >>> stream = AgrawalGenerator() >>> stream.next_instance() LabeledInstance( Schema(generators.AgrawalGenerator ), x=[1.105e+05 0.000e+00 5.400e+01 3.000e+00 1.400e+01 4.000e+00 1.350e+05 3.000e+01 3.547e+05], y_index=1, y_label='groupB' ) >>> stream.next_instance().x array([1.40893779e+05, 0.00000000e+00, 4.40000000e+01, 4.00000000e+00, 1.90000000e+01, 7.00000000e+00, 1.35000000e+05, 2.00000000e+00, 3.95015339e+05]) - __init__(
- instance_random_seed: int = 1,
- classification_function: int = 1,
- peturbation: float = 0.05,
- balance_classes: bool = False,
- Construct an Agrawal Generator - Parameters:
- instance_random_seed – Seed for random generation of instances. 
- classification_function – Classification function used, as defined in the original paper. 
- peturbation – The amount of peturbation (noise) introduced to numeric values 
- balance – Balance the number of instances of each class. 
 
 
 - __iter__() Iterator[_AnyInstance][source]#
- Get an iterator over the stream. - This will NOT restart the stream if it has already been iterated over. Please use the - restart()method to restart the stream.- Yield:
- An iterator over the stream. 
 
 - __next__() _AnyInstance[source]#
- Get the next instance in the stream. - Returns:
- The next instance in the stream.