AgrawalGenerator#
- class capymoa.stream.generator.AgrawalGenerator[source]#
Bases:
Stream
An Agrawal Generator
>>> from capymoa.stream.generator import AgrawalGenerator ... >>> stream = AgrawalGenerator() >>> stream.next_instance() LabeledInstance( Schema(generators.AgrawalGenerator ), x=ndarray(..., 9), y_index=1, y_label='groupB' ) >>> stream.next_instance().x array([1.40893779e+05, 0.00000000e+00, 4.40000000e+01, 4.00000000e+00, 1.90000000e+01, 7.00000000e+00, 1.35000000e+05, 2.00000000e+00, 3.95015339e+05])
- __init__(
- instance_random_seed: int = 1,
- classification_function: int = 1,
- peturbation: float = 0.05,
- balance_classes: bool = False,
Construct an Agrawal Generator
- Parameters:
instance_random_seed – Seed for random generation of instances.
classification_function – Classification function used, as defined in the original paper.
peturbation – The amount of peturbation (noise) introduced to numeric values
balance – Balance the number of instances of each class.
- next_instance() LabeledInstance | RegressionInstance [source]#
Return the next instance in the stream.
- Raises:
ValueError – If the machine learning task is neither a regression nor a classification task.
- Returns:
A labeled instances or a regression depending on the schema.