DriftDetectionMetrics#

class capymoa.drift.eval_detector.DriftDetectionMetrics[source]#

Bases: object

Metrics for evaluating drift detection performance.

__init__(
fp: int,
tp: int,
fn: int,
precision: float,
recall: float,
episode_recall: float,
f1: float,
mdt: float,
far: float,
ar: float,
n_episodes: int,
n_alarms: int,
) None[source]#
ar: float#

Alarm rate per EvaluateDriftDetector.rate_period instances

episode_recall: float#

Recall score for drift episodes (in this case, a correct prediction of a drift episode is counted as 1 true positive).

f1: float#

F1 score (harmonic mean of precision and recall).

far: float#

False alarm rate per EvaluateDriftDetector.rate_period instances

fn: int#

False negatives (missed drifts).

fp: int#

False positives (incorrect detections).

mdt: float#

Mean time to detect successful detections.

n_alarms: int#

Total number of alarms raised

n_episodes: int#

Total number of drift episodes

precision: float#

Precision score (tp / (tp + fp)).

recall: float#

Recall score (tp / (tp + fn)).

tp: int#

True positives (correct detections).