DriftDetectionMetrics#
- class capymoa.drift.eval_detector.DriftDetectionMetrics[source]#
Bases:
object
Metrics for evaluating drift detection performance.
- __init__(
- fp: int,
- tp: int,
- fn: int,
- precision: float,
- recall: float,
- episode_recall: float,
- f1: float,
- mdt: float,
- far: float,
- ar: float,
- n_episodes: int,
- n_alarms: int,
- ar: float#
Alarm rate per
EvaluateDriftDetector.rate_period
instances
- episode_recall: float#
Recall score for drift episodes (in this case, a correct prediction of a drift episode is counted as 1 true positive).
- f1: float#
F1 score (harmonic mean of precision and recall).
- far: float#
False alarm rate per
EvaluateDriftDetector.rate_period
instances
- fn: int#
False negatives (missed drifts).
- fp: int#
False positives (incorrect detections).
- mdt: float#
Mean time to detect successful detections.
- n_alarms: int#
Total number of alarms raised
- n_episodes: int#
Total number of drift episodes
- precision: float#
Precision score
(tp / (tp + fp))
.
- recall: float#
Recall score
(tp / (tp + fn))
.
- tp: int#
True positives (correct detections).