MixedGenerator#
- class capymoa.stream.generator.MixedGenerator[source]#
Bases:
MOAStreamGenerates MixedGenerator
>>> from capymoa.stream.generator import MixedGenerator ... >>> stream = MixedGenerator() >>> stream.next_instance() LabeledInstance( Schema(generators.MixedGenerator ), x=[1. 0. 0.208 0.333], y_index=0, y_label='positive' ) >>> stream.next_instance().x array([1. , 0. , 0.9637048 , 0.93986539])
Proposed by “Gama, Joao, et al. “Learning with drift detection.” Advances in artificial intelligence–SBIA 2004. Springer Berlin Heidelberg, 2004. 286-295.”
- __init__(
- instance_random_seed: int = 1,
- function: int = 1,
- balance_classes: bool = False,
Construct a MixedGenerator datastream generator.
- Parameters:
instance_random_seed – Seed for random generation of instances, defaults to 1
function – Classification function used, as defined in the original paper, defaults to 1
balance_classes – Balance the number of instances of each class, defaults to False
- __iter__() Iterator[_AnyInstance][source]#
Get an iterator over the stream.
This will NOT restart the stream if it has already been iterated over. Please use the
restart()method to restart the stream.- Yield:
An iterator over the stream.
- __next__() _AnyInstance[source]#
Get the next instance in the stream.
- Returns:
The next instance in the stream.